Localization of image fragments with high frequency intensity oscillation
Abstract
Keywords
Full Text:
PDFReferences
1. El Hachem C, Santiago R, Painvin L, et al. Brick orientation adjustment in the automotive industry using image processing techniques. In: Proceedings of 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT); 17–20 May 2022; Istanbul, Turkey. pp. 729–733.
2. Dougherty G. Digital Image Processing for Medical Applications. Cambridge University Press; 2009. pp. 1–459.
3. Shi W. The application of image processing in the criminal investigation. In: Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications; 10–11 December 2016; Xi’an, China. pp. 139–142.
4. Schwering PBW, Kemp RAW, Schutte K. Image enhancement technology research for army applications. Proceedings of SPIE 2013; 8706: 2–11. doi: 10.1117/12.2017855
5. Fan L. Image processing algorithm of Hartmann method aberration automatic measurement system with tensor product model. Journal on Image and Video Processing 2019; 2019: 43. doi: 10.1186/S13640-019-0440-9
6. Asht S, Dass R. Pattern recognition techniques: A review. International Journal of Computer Science and Telecommunications 2012; 3(8): 25–29.
7. Singh C. Machine learning in pattern recognition. European Journal of Engineering and Technology Research 2023; 8(2): 63–68. doi: 10.24018/ejeng.2023.8.2.3025
8. Karrach L, Pivarciova E. Recognition of data matrix codes in images and their applications in production processes. Management Systems in Production Engineering 2020; 28(3): 154–161. doi: 10.2478/mspe-2020-0023
9. Liu T, Yuan Z, Sun J, et al. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence 2011; 33(2): 353–367. doi: 10.1109/TPAMI.2010.70
10. Chen C, Wei J, Peng C, et al. Improved saliency detection in RGB-D images using two-phase depth estimation and selective deep fusion. IEEE Transactions on Image Processing 2020; 29: 4296–4307. doi: 10.1109/TIP.2020.2968250
11. Cheng MM, Mitra NJ, Huang X, et al. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2015; 37(3): 569–582. doi: 10.1109/TPAMI.2014.2345401
12. Viola P, Jones MJ. Robust real-time face detection. International Journal of Computer Vision 2004; 57(2): 137–154. doi: 10.1023/B:VISI.0000013087.49260.fb
13. Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 1979; 9(1): 62–66.
14. Bradley D, Roth G. Adaptive thresholding using the integral image. Journal of Graphics Tools 2007; 12(2): 13–21. doi: 10.1080/2151237X.2007.10129236
15. Niblack W. An Introduction to Digital Image Processing. Prentice Hall; 1986. pp. 1–215.
16. Sauvola J, Pietikainen M. Adaptive document image binarization. Pattern Recognition 2000; 33(2): 225–236. doi: 10.1016/S0031-3203(99)00055-2
17. Koleda P, Hrčková M. Global and local thresholding techniques for sawdust analysis. Acta Facultatis Technicae 2018; XXIII(1): 33–42.
18. Burger W, Burge MJ. Digital Image Processing: An Algorithmic Introduction Using Java. Springer-Verlag London Ltd.; 2016. pp. 1–811.
19. Fang L, Xie C. 1-D barcode localization in complex background. In: Proceedings of 2010 International Conference on Computational Intelligence and Software Engineering; 10–12 December 2010; Wuhan, China. pp. 1–3.
20. Santosa F, Goh M. Bar code decoding in a camera-based scanner: Analysis and algorithm. SIAM Journal on Imaging Sciences 2022; 15(3): 1017–1040. doi: 10.1137/21M1449658
21. Shapiro LG, Stockman GC. Computer Vision, 1st ed. Pearson; 2001. pp. 1–580.
22. Gonzalez R, Rafael R. Digital Image Processing. Pearson; 2018. pp. 1–1168.
23. Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1986; PAMI-8(6): 679–698. doi: 10.1109/TPAMI.1986.4767851
24. Bradski G, Kaehler A. Learning Opencv: Computer Vision with the Opencv Library. O’ Reilly Media; 2008. pp. 1–555.
25. Jähne B, Scharr H, Körkel S. Principles of filter design. In: Jähne B, Haussecker H, Geissler P (editors). Handbook of Computer Vision and Applications. Cambridge: Academic Press; 1999. pp. 125–151.
26. Papari G, Petkov N. Edge and line oriented contour detection: State of the art. Image and Vision Computing 2011; 29(2–3): 79–103. doi: 10.1016/j.imavis.2010.08.009
27. Hough PVC. Method and Means for Recognizing Complex Patterns. U.S. Atomic Energy Commission No. 3069654, 18 December 1962.
28. Trubitsyn A, Grachev EY. Switching median filter for suppressing multi-pixel impulse noise. Computer Optics 2021; 45(4): 580–588. doi: 10.18287/2412-6179-CO-841
29. Lin JA, Fuh CS. 2D barcode image decoding. Mathematical Problems in Engineering 2013; 2013: 848276. doi: 10.1155/2013/848276
30. Dynamsoft. Barcode reader SDK. Available online: www.dynamsoft.com/Products/Dynamic-BarcodeReader.aspx (accessed on 25 May 2023).
31. Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2005; 27(10): 1615–1630. doi: 10.1109/TPAMI.2005.188
DOI: https://doi.org/10.32629/jai.v6i2.597
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Andrey Trubitsyn, Maksim Shadrin, Andrey Serezhin
License URL: https://creativecommons.org/licenses/by-nc/4.0