Research on the Key Technologies of Motor Imagery EEG Signal Based on Deep Learning
Abstract
Keywords
Full Text:
PDFReferences
1. Zied Tayeb; Juri Fedjaev; Nejla Ghaboosi; et al. Validating deep neural networks for online decoding of motor imagery movements from EEG signals. Sensors 2019; 19(1): 210.
2. JJ Shih; Krusienski; Dean J; et al. Brain-computer interfaces in medicine. Mayo Clinic Proceedings 2012; 87: 268–279.
3. Pfurtscheller G. Functional brain imaging based on ERD/ERS. Vision Research 2001; 41(10-11): 1257-1260.
4. Obermaier B; Neuper C. Information transfer rate in a five-classes brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 2001; 9(3): 283-288.
5. Wan B; Liu Y. Multi-pattern motor imagery recognition based on EEG features. Journal of Tianjin University 2010; 43(10): 895-900.
6. Xu X; Wang N. Feature extraction and classification of EEG signals in four kinds of motion imagination. Journal of Nanjing University of Posts and Telecommunications (Social Science) 2017; 37(06): 18-22.
7. Blankertz B; Müller KR. The BCI competition 2003. IEEE Transactions on Biomedical Engineering 2004; 51(6): 1044-1051.
8. Michel Cotsaftis. The autonomous intelligence challenge. Journal of Autonomous Intelligence 2018; 1(1): 1-1.
9. Manu Mitra. Neural processor in artificial intelligence advancement. Journal of Autonomous Intelligence 2018; 1(1): 2-14.
10. Delorme A; Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004; 134(1): 9-21.
11. Ahmad A; Xavier J. 3D to 2D bijection for spherical objects under equidistant fisheye projection. Computer Vision and Image Understanding 2014; 125: 172-183.
12. Jiaqing Chen; Xiaohui Mu; Yinglei Song; et al. Flame recognition in video images with color and dynamic features of flames. Journal of Autonomous Intelligence 2019; 1(1): 11-29.
13. Weide Li, Juan Zhang. An innovated integrated model using singular spectrum analysis and support vector regression optimized by intelligent algorithm for rainfall forecasting. Journal of Autonomous Intelligence 2019; 1(1): 30-45.
14. Krizhevsky A; Sutskever I. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 2012; 1097-1105.
15. Cho K; Van Merriënboer B. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv 2014; 1406.
16. Graves A; Fernández S. Bidirectional LSTM networks for improved phoneme classification and recognition. International Conference on Artificial Neural Networks 2005; 799-804.
17. Lawhern VJ; Solon AJ. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. Journal of Neural Engineering 2018; 15(5): 056013.
18. Ordóñez F; Roggen D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 2016; 16: 115.
19. Yao S; Hu S; Zhao Y; et al. Deepsense: A unified deep learning framework for time-series mobile sensing data processing. In Proceedings of the 26th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee 2017; 351–360.
20. Okita T; Inoue S. Activity recognition: Translation across sensor modalities using deep learning. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers 2018; 1462–1471.
21. Ha K-W; Jeong J-W. Motor imagery EEG classification using capsule networks. Sensors 2019; 19: 2854.
22. Nicolas-Alonso; Luis F; Gomez-Gil J. Brain computer interfaces, a review. Sensors 2012; 12: 1211–1279.
23. Kim D-W; Lee J-C; Park Y-M; et al. Auditory brain-computer interfaces (BCIs) and their practical applications. Biomedical Engineering Letters 2012; 2: 13–17.
24. Michel Cotsaftis. Autonomous intelligence: An advance level in modern technology. Journal of Autonomous Intelligence 2018; 1(1): 44-44.
25. Yongzhong Lu; Min Zhou; Shiping Chen; et al. A perspective of conventional and bioinspired optimization techniques in maximum likelihood parameter estimation. Journal of Autonomous Intelligence 2018; 2(1): 1-12.
26. Lotte F; Bougrain L; Cichocki A; et al. A review of classification algorithms for EEG-based brain-computer interfaces: A 10-year update. Journal of Neural Engineering 2018; 15: 031005.
27. Park J; Min K; Kim H; et al. Road surface classification using a deep ensemble network with sensor feature selection. Sensors 2018; 18: 4342.
28. Zhao R; Yan R; Wang J; et al. A hybrid CNN –LSTM algorithm for online defect recognition of CO2 welding. Sensors (Basel) 2017; 17(2).
29. Gao M; Shi G; Li S. Online prediction of ship behavior with automatic identification system sensor data using bidirectional long short-term memory recurrent neural network. Sensors 2018; 18: 4211.
30. Liu C; Wang Y; Kumar K; et al. Investigations on speaker adaptation of LSTM RNN models for speech recognition. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing 2016; 5020–5024.
DOI: https://doi.org/10.32629/jai.v2i2.60
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Zhuozheng Wang, Zhuo Ma, Xiuwen Du, Yingjie Dong, Wei Liu
License URL: https://creativecommons.org/licenses/by-nc/4.0