Artificial neural networks algorithms for prediction of human hair loss related autoimmune disorder problem
Abstract
Keywords
Full Text:
PDFReferences
1. Adrion JR, Galloway JG, Kern AD. Predicting the landscape of recombination using deep learning. Molecular Biology and Evolution 2020; 37(6): 1790–1808. doi: 10.1093/molbev/msaa038
2. Alkarakatly T, Eidhah S, Al-Sarawani M, et al. Skin lesions identification using deep convolutional neural network. In: 2019 International Conference on Advances in the Emerging Computing Technologies (AECT); 10–10 February 2020; Al Madinah Al Munawwarah, Saudi Arabia.
3. Calderón C, Sanchez K, Castillo S, Arguello H. BILSK: A bilinear convolutional neural network approach for skin lesion classification. Computer Methods and Programs in Biomedicine Update 2021; 1: 100036. doi: 10.1016/j.cmpbup.2021.100036
4. Codella, NCF, Gutman D, Celebi ME, et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 4–7 April 2018; Washington, DC, USA.
5. Daneshjou R, Barata C, Betz-Stablein B, et al. Checklist for evaluation of image-based AI reports in dermatology: CLEAR derm consensus guidelines from the International Skin Imaging Collaboration artificial intelligence working group. JAMA Dermatol 2022; 158(1):90–96. doi: 10.1001/jamadermatol.2021.4915
6. Cullell-Dalmau M, Otero-Viñas M, Manzo C. Research techniques made simple: Deep learning for the classification of dermatological images. Journal of Investigative Dermatology 2020; 140(3): 507–514. doi: 10.1016/j.jid.2019.12.029
7. Codella N, Rotemberg V, Tschandl P, et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the International Skin Imaging Collaboration (ISIC). arXiv 2019; arXiv:1902.03368. doi: 10.48550/arXiv.1902.03368
8. Han SS, Kim MS, Lim W, et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. Journal of Investigative Dermatology 2018; 138(7): 1529–1538. doi: 10.1016/j.jid.2018.01.028
9. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 27–30 June 2016; Las Vegas, USA.
10. Kawahara J, Hamarneh G. Fully convolutional neural networks to detect clinical dermoscopic features. IEEE Journal of Biomedical and Health Informatics 2019; 23(2): 578–585. doi: 10.1109/JBHI.2018.2831680
11. Kwasigroch A, Mikolajczyk A, Grochowski M. Deep neural networks approach to skin lesions classification—A comparative analysis. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR); 28–31 August 2017; Miedzyzdroje, Poland.
12. Lecun Y, Haffner P, Bottou L, Bengio Y. Object recognition with gradient-based learning. In: Shape, Contour and Grouping in Computer Vision. Springer; 1999. pp. 319–345.
13. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Medical Image Analysis 2017; 42: 60–88. doi: 10.1016/j.media.2017.07.005
14. Sayyad S, Midhunchakkaravarthy D, Sayyad F. Deep review on Alopecia Areata diagnosis for hair loss-related autoimmune disorder problem. International Journal of Applied Pharmaceutics 2022; 8–12. doi: 10.22159/ijap.2022.v14ti.19
15. Fabbrocini G, Cantelli M, Masarà A, et al. Female pattern hair loss: A clinical, pathophysiologic, and therapeutic review. International Journal of Women’s Dermatology 2018; 4(4): 203–211. doi: 10.1016/j.ijwd.2018.05.001
16. Majtner T, Yildirim-Yayilgan S, Hardeberg JY. Combining deep learning and hand-crafted features for skin lesion classification. In: 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA); 12–15 December 2016; Oulu, Finland.
17. Marchetti MA, Codella NCF, Dusza SW, et al. Results of the 2016 International skin imaging collaboration international symposium on biomedical imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. Journal of the American Academy of Dermatology 2018; 78(2): 270–277. doi: 10.1016/j.jaad.2017.08.016
18. Mishkin D, Sergievskiy N, Matas J. Systematic evaluation of convolution neural network advances on the Imagenet. Computer Vision and Image Understanding 2017; 161: 11–19. doi: 10.1016/j.cviu.2017.05.00
19. Perez F, Avila S, Valle E. Solo or ensemble? Choosing a CNN architecture for melanoma classification. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); 2019.
20. Sayyad S, Midhunchakkaravarthy D, Sayyad F. An analysis of Alopecia Areata classification framework for human hair loss Based on VGG-SVM Approach. Journal of Pharmaceutical Negative Results 2022; 13: 9–15.
21. Cauvery, Siddalingaswamy PC, Pathan S, D’souza N. A multiclass skin lesion classification approach using transfer learning based convolutional neural network. In: 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII); 25–27 March 2021; Chennai, India.
22. Shakeel CS, Khan SJ, Chaudhry B, et al. Classification framework for healthy hairs and Alopecia Areata: A machine learning (ML) approach. Computational and Mathematical Methods in Medicine 2021; 2021: 1102083. doi: 10.1155/2021/1102083
DOI: https://doi.org/10.32629/jai.v6i2.606
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Shabnam Sayyad, Fariok Sayyad
License URL: https://creativecommons.org/licenses/by-nc/4.0