banner

Characterization of ink-based phantoms with deep networks and photoacoustic method

Hui Ling Chua, Audrey Huong, Xavier Ngu

Abstract


This study aims to explore the feasibility of using an in-house developed photoacoustic (PA) system for predicting blood phantom concentrations using a pretrained Alexnet and a Long Short-Term Memory (LSTM) network. In two separate experiments, we investigate the performance of our strategy using a point laser source and a color-tunable LightEmitting Diode (LED) as the illumination source. A single-point transducer is employed to measure signal change by adding ten different black ink concentrations into a tube. These PA signals are used for training and testing the employed deep networks. We found that the LED system with light wavelength of 450 nm gives the best characterization performance. The classification accuracy of the Alexnet and LSTM models tested on this dataset shows an average value of 94% and 96%, respectively, making this a preferred light wavelength for future operation. Our system may be used for the noninvasive assessment of microcirculatory changes in humans.

Keywords


photoacoustic; concentration; phantom; Alexnet; LSTM

Full Text:

PDF

References


1. Urits I, Seifert D, Seats A, et al. Treatment strategies and effective management of phantom limb—Associated pain. Current Pain and Headache Reports 2019; 23(9): 1–7. doi: 10.1007/s11916-019-0802-0

2. Kleiser S, Ostojic D, Andresen B, et al. Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension. Biomedical Optics Express 2018; 9(1): 86–101. doi: 10.1364/BOE.9.000086

3. Ntombela L, Bamise A, Chetty N. Low-cost fabrication of optical tissue phantoms for use in biomedical imaging. Heliyon 2020; 6(3): e03602. doi: 10.1016/j.heliyon.2020.e03602

4. Jawad HJ, Sarimollaoglu M, Biris AS, Zharov VP. Dynamic blood flow phantom with negative and positive photoacoustic contrasts. Biomedical Optics Express 2018; 9(10): 4702–4713. doi: 10.1364/BOE.9.004702

5. Jonasson H, Fredriksson I, Larsson M, et al. Validation of speed-resolved laser doppler perfusion in a multimodal optical system using a blood-flow phantom. Journal of Biomedical Optics 2019; 24(9): 95002. doi: 10.1117/1.JBO.24.9.095002

6. Mumi ARO, Alias R, Abdullah J, et al. Assessment of electromagnetic absorption towards human head using specific absorption rate. Bulletin of Electrical Engineering and Informatics 2018; 7(4): 657–664. doi: 10.11591/eei.v7i4.1357

7. Wu Y, Cheng M, Wang W, et al. Development of chinese female computational phantom rad-human and its application in radiation dosimetry assessment. Nuclear Technology 2018; 201(2): 155–164

8. van Herten RLM, Chiribiri A, Breeuwer M, et al. Physics-informed neural networks for myocardial perfusion MRI quantification. Medical Image Analysis 2022; 78: 102399. doi: 10.1016/j.media.2022.102399

9. Cui H, Liu C, Esworthy T, et al. 4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. Science Advances 2020; 6(26): eabb5067. doi: 10.1126/sciadv.abb5067

10. Xie Z, Yang Y, He Y, et al. In vivo assessment of inflammation in carotid atherosclerosis by noninvasive photoacoustic imaging. Theranostics 2020; 10(10): 4694. doi: 10.7150/thno.41211

11. Bachir W, Dargham FA. Feasibility of 830 nm laser imaging for vein localization in dark skin tissue-mimicking phantoms. Physical and Engineering Sciences in Medicine 2022; 45(1): 135–142. doi: 10.1007/s13246-021-01096-x

12. Imanishi A, Kimura A, Miyamoto H, et al. Human organ phantoms for catheterization using the radiation crosslinking technique. Journal of Applied Polymer Science 2021; 138(33): 50818. doi: 10.1002/app.50818

13. Li T, Lu Z, Li Z, et al. In vivo detection of the margin of simulated melanoma based on a highly integrated and intelligent fiber optic spectrometer. Acta Laser Biology Sinica 2020; 29(6): 506–512. doi: 10.3969/j.issn.1007-7146.2020.06.005

14. Lam JH, Hill BY, Quang T, et al. Multi-modal diffuse optical spectroscopy for high-speed monitoring and wide-area mapping of tissue optical properties and hemodynamics. Journal of Biomedical Optics 2021; 26(8): 85002. doi: 10.1117/1.JBO.26.8.085002

15. Anugrah MA, Suryani S, Ilyas S, et al. Composite gelatin/Rhizophora SPP particleboards/PVA for soft tissue phantom applications. Radiation Physics and Chemistry 2020; 173: 108878. doi: 10.1016/j.radphyschem.2020.108878

16. Manwar R, Mohsin Z, Xu Q. Signal and image processing in biomedical photoacoustic imaging: A review. Optics 2020; 2(1): 1–24. doi: 10.3390/opt2010001

17. Glatz J, Deliolanis NC, Razansky D, et al. Blind source unmixing in multi-spectral optoacoustic tomography. Optics Express 2011; 19(4): 3175–3184. doi: 10.1364/OE.19.003175

18. Razansky D, Vinegoni C, Ntziachristos V. Multispectral photoacoustic imaging of fluorochromes in small animals. Optics Letters 2007; 32(19): 2891–2893. doi: 10.1364/OL.32.002891

19. Roy K, Thomas A, Paul S, et al. An optofluidic dye concentration detector based on the pulsed photoacoustic effect. Microfluidics, BioMEMS, and Medical Microsystems XIX 2021; 11637: 89–95. doi: 10.1117/12.2582656

20. Dolet A, Ammanouil R, Petrilli V, et al. In vitro and in vivo multispectral photoacoustic imaging for the evaluation of chromophore concentration. Sensors 2021; 21(10): 3366. doi: 10.3390/s21103366

21. Raschka S, Patterson J, Nolet C. Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence. Information 2020; 11(4): 193. doi: 10.3390/info11040193

22. Gruson D, Helleputte T, Rousseau P, Gruson D. Data science, artificial intelligence, and machine learning: Opportunities for laboratory medicine and the value of positive regulation. Clinical Biochemistry 2019; 69: 1–7. doi: 10.1016/j.clinbiochem.2019.04.013

23. Lee J, Davari H, Singh J, Pandhare V. Industrial artificial intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters 2018; 18: 20–23. doi: 10.1016/j.mfglet.2018.09.002

24. Yu Kun-Hsing, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nature Biomedical Engineering 2018; 2(10): 719–731. doi: 10.1038/s41551-018-0305-z

25. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthcare Journal 2019; 6(2): 94. doi: 10.7861/futurehosp.6-2-94

26. Syarief M, Setiawan W. Convolutional Neural Network for maize leaf disease image classification. Telkomnika (Telecommunication Computing Electronics and Control) 2020; 18(3): 1376–1381. doi: 10.12928/TELKOMNIKA.v18i3.14840

27. Youn SW, Kwon J, Kim J, et al. Ideal bolus geometry predicted from in vitro pulsatile flow phantom and artificial neural networks for the optimization of image acquisition protocols for aortic contrast-enhanced computed tomography angiography. Cardiovascular Imaging Asia 2019; 3(2): 35–46. doi: 10.22468/cvia.2018.00248

28. Zhang H, LI H, Nyayapathi N, et al. A new deep learning network for mitigating limited-view and under-sampling artifacts in ring-shaped photoacoustic tomography. Computerized Medical Imaging and Graphics 2020; 84: 101720. doi: 10.1016/j.compmedimag.2020.101720

29. Chen MT, Durr NJ. Rapid tissue oxygenation mapping from snapshot structured-light images with adversarial deep learning. Journal of Biomedical Optics 2020; 25(11): 112907. doi: 10.1117/1.JBO.25.11.112907

30. Johnstonbaugh K, Agrawal S, Durairaj DA, et al. A deep learning approach to photoacoustic wavefront localization in deep-tissue medium. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2020; 67(12): 2649–2659. doi: 10.1109/TUFFC.2020.2964698

31. Siami-Namini S, Tavakoli N, Namin AS. The Performance of LSTM and BiLSTM in Forecasting Time Series. In: Proceedings of 2019 IEEE International Conference on Big Data (Big Data); 9–12 December 2019; Los Angeles, CA, USA. pp. 3285–3292.

32. Li Z, Ge Q, Feng J, et al. Quantification of blood flow index in Diffuse Correlation Spectroscopy using Long Short-Term Memory architecture. Biomedical Optics Express 2021; 12(7): 4131–4146. doi: 10.1364/BOE.423777

33. Alex S. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena 2020; 404: 132306. doi: 10.1016/j.physd.2019.132306

34. Gupta A. A comprehensive guide on deep learning optimizers. Available online: https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optimizers (accessed on 7 October 2021).

35. Devassy BM, George S. Ink classification using Convolutional Neural Network. In: Proceedings of Conference NISKJ; 2019.

36. Wang S, He H, Lv R, et al. Classification modeling method for hyperspectral stamp-pad ink data based on one-dimensional Convolutional Neural Network. Journal of Forensic Sciences 2022; 67(2): 550–561. doi: 10.1111/1556-4029.14909

37. Rajian JR, Carson PL, Wang X. Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent. Optics Express 2009; 17(6): 4879–4889. doi: 10.1364/OE.17.004879

38. Jakovljevic M, Hsieh S, Ali R, et al. Local speed of sound eatimation in tissue using pulse-echo ultrasound: Model-based approach. The Journal of the Acoustical Society of America 2018; 144(1): 254–256. doi: 10.1121/1.5043402




DOI: https://doi.org/10.32629/jai.v6i3.621

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Hui Ling Chua, Audrey Huong, Xavier Ngu

License URL: https://creativecommons.org/licenses/by-nc/4.0