banner

Conditioning and monitoring of grinding wheels: A state-of-the-art review

Shrinath M. Patil-Mangore, Niranjan L. Shegokar, Nand Jee Kanu

Abstract


Grinding wheel condition monitoring is an important step towards the prediction of grinding wheel faulty conditions. It is beneficial to define techniques to minimize the wear of the grinding wheels and finally enhance the life of the grinding wheels. Grinding wheel condition monitoring is done by two techniques such as (i) direct and (ii) indirect. Direct monitoring employs optical sensors and computer vision techniques, and indirect monitoring is done by signal analysis such as acoustic emission (AE), vibration, cutting force, etc. Methods implemented for grinding wheel monitoring in the published research papers are reviewed. The review is compiled in five sections: (a) process parameters measurement, (b) data acquisition systems, (c) signal analysis techniques, (d) feature extraction, and (e) classification methods. In today’s era of Industry 4.0, a large amount of manufacturing data is generated in the industry. So, conventional machine learning techniques are insufficient to analyze real-time conditioning monitoring of the grinding wheels. However, deep learning techniques such as artificial neural network (ANN), convolutional neural network (CNN) have shown prediction accuracy above 99%.

Keywords


grinding wheel; condition monitoring; artificial neural network; convolutional neural networks

Full Text:

PDF

References


1. Mahata S, Shakya P, Babu NR, Prakasam PK. In-process characterization of surface finish in cylindrical grinding process using vibration and power signals. Procedia CIRP 2020; 88: 335–340. doi: 10.1016/j.procir.2020.05.058

2. Kumar S, Park HS, Nedelcu D. Development of real-time grinding process monitoring and analysis system. International Journal of Precision Engineering and Manufacturing 2021; 22: 1345–1355. doi:10.1007/s12541-021-00539-5

3. Kanu NJ, Mangalam A, Gupta E, et al. Investigation on secondary deformation of ultrafine SiC particles reinforced LM25 metal matrix composites. Materials Today: Proceedings 2021; 47(11): 3054–3058. doi: 10.1016/j.matpr.2021.05.640

4. Shivith K, Rameshkumar K. AE signature analysis using continuous and discrete wavelet transforms to predict grinding wheel conditions. Iop Conference Series: Materials Science and Engineering 2021; 1045(1): 012034. doi: 10.1088/1757-899x/1045/1/012034

5. Lee CH, Jwo JS, Hsieh HY, Lin CS. An intelligent system for grinding wheel condition monitoring based on machining sound and deep learning. IEEE Access 2020; 8: 58279–58289. doi: 10.1109/ACCESS.2020.2982800

6. Zhang B., Katinas C, Shin YC. Robust wheel wear monitoring system for cylindrical traverse grinding. IEEE Access 2020; 25(5): 2220–2229. doi: 10.1109/TMECH.2020.3007047

7. Ding N, Luo XC, Zhao CL, Shi J. An intelligent grinding wheel wear monitoring system based on acoustic emission. Solid State Phenomena 2017; 261: 195–200. doi: 10.4028/www.scientific.net/SSP.261.195

8. Lin YK, Wu BF, Chen CM. Characterization of grinding wheel condition by acoustic emission signals. In: Proceedings of the 2018 International Conference on System Science and Engineering; 28–30 June 2018; Taipei, Taiwan. pp. 1–6.

9. Kanu NJ. Modeling of stress wave propagation in matrix cracked laminates. Aip Advances 2021; 11(8): 085217. doi: 10.1063/5.0057749

10. Arun A, Rameshkumar K, Unnikrishnan D, Sumesh A. Tool condition monitoring of cylindrical grinding process using acoustic emission sensor. Materials Today: Proceedings 2018; 5(5): 11888–11899. doi: 10.1016/j.matpr.2018.02.162

11. Alexandre FA, Lopes WN, Lofrano Dotto FR, et al. Tool condition monitoring of aluminum oxide grinding wheel using AE and fuzzy model. The International Journal of Advanced Manufacturing Technology 2018; 96: 67–79. doi: 10.1007/s00170-018-1582-0

12. Vates UK, Sharma BP, Kanu NJ, et al. Optimization of process parameters of galvanizing steel in resistance seam welding using RSM. Proceedings of International Conference in Mechanical and Energy Technology 2020; 174: 695–706. doi: 10.1007/978-981-15-2647-3_65

13. Lin YK, Wu BF. Machine learning-based wheel monitoring for sapphire wafers. IEEE Access 2021; 9: 46348–46363. doi: 10.1109/ACCESS.2021.3067329

14. Wang Y, Zhou P, Pan Y, et al. Wheel wear related instability in grinding of quartz glass. The International Journal of Advanced Manufacturing Technology 2022; 119: 233–245. doi: 10.21203/rs.3.rs-424350/v1

15. Zhang B, Katinas C, Shin YC. Robust wheel wear monitoring system for cylindrical traverse grinding. IEEE/ASME Transactions on Mechatronics 2020; 25(5): 2220–2229. doi: 10.1109/TMECH.2020.3007047

16. Nguyen DT, Yin S, Tang Q, et al. Online monitoring of surface roughness and grinding wheel wear when grinding Ti-6Al-4V titanium alloy using ANFIS-GPR hybrid algorithm and Taguchi analysis. Precision Engineering 2019; 55: 275–292. doi: 10.1016/j.precisioneng.2018.09.018

17. Liu CS, Ou YJ. Grinding wheel loading evaluation by using acoustic emission signals and digital image processing. Sensors in Experimental Mechanics 2020; 20(15): 4092. doi: 10.3390/s20154092

18. Vates UK, Sharma BP, Kanu NJ, et al. Modeling and optimization of IoT factors to enhance agile manufacturing strategy-based production system using SCM and RSM. Smart Science 2022; 10(2): 158–173. doi: 10.1080/23080477.2021.2017543

19. Pandiyan V, Caesarendra W, Tjahjowidodo T, Tan HH. In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. Journal of Manufacturing Processes 2018; 31: 199–213. doi: 10.1016/j.jmapro.2017.11.014

20. Mohanraj T, Shankar S, Rajasekar R, et al. Tool condition monitoring techniques in milling process—A review. Journal of Materials Research & Technology 2020; 9(1): 1032–1042. doi: 10.1016/j.jmrt.2019.10.031

21. Mirifar S, Kadivar M, Azarhoushang B. First steps through intelligent grinding using machine learning via integrated acoustic emission sensors. Journal of Manufacturing and Materials Processing 2020; 4(2): 35. doi: 10.3390/jmmp4020035

22. Liu CS, Ou YJ. Grinding wheel loading evaluation by using acoustic emission signals and digital image processing. Sensors (Basel, Switzerland) 2020; 20(15): 4092. doi: 10.3390/s20154092

23. Moia DFG, Thomazella IH, Aguiar PR, et al. Tool condition monitoring of aluminum oxide grinding wheel in dressing operation using acoustic emission and neural networks. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2015; 37(2): 627–640. doi: 10.1007/s40430-014-0191-6

24. Yang Z, Yu Z, Xie C, Huang Y. Application of hilbert-huang transform to acoustic emission signal for burn feature extraction in surface grinding process. Measurement 2014; 47(1): 14–21. doi: 10.1016/j.measurement.2013.08.036

25. Gonfa BK, Sinha D, Vates UK, et al. Investigation of mechanical and tribological behaviors of aluminum based hybrid metal matrix composite and multi-objective optimization. Materials 2022; 15(16): 5607. doi: 10.3390/ma15165607

26. Mokbel AA, Maksoud TMA. Monitoring of the condition of diamond grinding wheels using acoustic emission technique. Journal of Materials Processing Technology 2000; 101(1): 292–297. doi: 10.1016/S0924-0136(00)00433-7

27. Bi G, Liu S, Su S, Wang Z. Diamond grinding wheel condition monitoring based on acoustic emission signals. Sensors (Switzerland) 2021; 21(4): 1054. doi: 10.3390/s21041054

28. Lopes WN, Junior POC, Aguiar PR, et al. An efficient short-time fourier transform algorithm for grinding wheel condition monitoring through acoustic emission. The International Journal of Advanced Manufacturing Technology 2021; 113: 585–603. doi: 10.1007/s00170-020-06476-3

29. Krishnan PS, Rameshkumar K. Grinding wheel condition prediction with discrete hidden markov model using acoustic emission signature. Materials Today: Proceedings 2021; 46: 9168–9175. doi: 10.1016/j.matpr.2019.12.428

30. Aulestia MA, Aguiar PR, Junior PO, et al. A time-frequency acoustic emission-based technique to assess workpiece surface quality in ceramic grinding with PZT transducer. Sensors (Basel, Switzerland) 2019; 19(18): 3193. doi: 10.3390/s1918391

31. Junior PO, Aguiar PR, Ruzzi RS, et al. Tool condition monitoring in grinding operation using piezoelectric impedance and wavelet transform. The 6th International Electronic Conference on Sensors and Applications 2020; 42(1): 10. doi: 10.3390/ecsa-6-06589

32. Sane NM, Tamboli M. Condition monitoring of surface grinding machine using raw acoustic emission technique to determine bearing failure. International Journal of Advance Research in Science and Engineering 2018; 7(3): 887–893.

33. Devendiran S, Manivannan K. Condition monitoring on grinding wheel wear using wavelet analysis and decision tree C4.5 algorithm. International Journal of Engineering and Technology 2013; 5(5): 4010–4024.

34. Feng J, Kim BS, Shih A, Ni J. Tool wear monitoring for micro-end grinding of ceramic materials. Journal of Materials Processing Technology 2009; 209(11): 5110–5116. doi: 10.1016/j.jmatprotec.2009.02.009

35. Stephenson DJ, Sun X, Zervos C. A study on ELID ultra precision grinding of optical glass with acoustic emission. International Journal of Machine Tools and Manufacture 2006; 46(10): 1053–1063. doi: 10.1016/j.ijmachtools.2005.08.013

36. Tönshoff HK, Jung M, Männel S, Rietz W. Using acoustic emission signals for monitoring of production processes. Ultrasonics 2000; 37(10): 681–686. doi: 10.1016/S0041-624X(00)00026-3

37. Kanu NJ, Lal A. Nonlinear static and dynamic performance of CNT reinforced and nanoclay modified laminated nanocomposite plate. Aip Advances 2022; 12(2). doi: 10.1063/5.0074987

38. Subbiah P, Johnstephen R, Selvam M, Palani C. On line monitoring of grinding wheel loading in grinding using vibration analysis. International Journal of Applied Engineering Research 2018; 10(83): 119–124.

39. Thomazella R, Lopes WN, Aguiar PR, et al. Digital signal processing for self-vibration monitoring in grinding: A new approach based on the time-frequency analysis of vibration signals. Measurement 2019; 145: 71–83. doi: 10.1016/j.measurement.2019.05.079

40. Alexandre FA, Lopes WN, Ferreira FI, et al. Chatter vibration monitoring in the surface grinding process through digital signal processing of acceleration signal. 4th International Electronic Conference on Sensors and Applications 2018; 2(3): 126. doi: 10.3390/ecsa-4-04927

41. Caesarendra W, Triwiyanto T, Pandiyan V, et al. A CNN prediction method for belt grinding tool wear in a polishing process utilizing 3-axes force and vibration data. Electronics 2021; 10(12): 1–30. doi: 10.3390/electronics10121429

42. Yang Z, Yu Z. Experimental study of burn classification and prediction using indirect method in surface grinding of AISI 1045 steel. International Journal of Advanced Manufacturing Technology 2013; 68: 2439–2449. doi: 10.1007/s00170-013-4882-4

43. Baban M, Baban CF, Moisi B. A fuzzy logic-based approach for predictive maintenance of grinding wheels of automated grinding lines. In: 2018 23rd International Conference on Methods and Models in Automation and Robotics; 27–30 August 2018; Miedzyzdroje, Poland. pp. 483–486.

44. Sauter, E., Sarikaya, E., Winter, M. et al. In-process detection of grinding burn using machine learning. The International Journal of Advanced Manufacturing Technology 2021; 115: 2281–2297. doi: 10.1007/s00170-021-06896-9

45. Junior POC, Aguiar PR, Foschini CR, et al. Feature extraction using frequency spectrum and time domain analysis of vibration signals to monitoring advanced ceramic in grinding process. Iet Science, Measurement & Technology 2019; 13(1): 1–8. doi: 10.1049/iet-smt.2019.5178

46. Thomazella R, Lopes WN, Aguiar PR, et al. Digital signal processing for self-vibration monitoring in grinding: A new approach based on the time-frequency analysis of vibration signals. Measurement: Journal of the International Measurement Confederation 2019; 145: 71–83. doi: 10.1016/j.measurement.2019.05.079

47. Aguiar PR, Junior PO, Alexandre FA, et al. A time—Frequency acoustic emission-based technique to assess workpiece surface quality in ceramic grinding with PZT transducer. Sensors 2019; 19(18): 3913. doi: 10.3390/s19183913

48. Aswin F, Dwisaputra I, Afriansyah R. Online vibration monitoring system for rotating machinery based on 3-axis MEMS accelerometer. Journal of Physics: Conference Series 2019; 1450(1): 012109. doi: 10.1088/1742-6596/1450/1/012109

49. Kanu NJ, Vates UK, Singh GK, Chavan S. Fracture problems, vibration, buckling, and bending analyses of functionally graded materials: A state-of-the-art review including smart FGMS. Particulate Science and Technology 2019; 37(5): 583–608. doi: 10.1080/02726351.2017.1410265

50. Gupta E, Kanu NJ, Agrawal MS, et al. An insight into numerical investigation of bioreactor for possible oxygen emission on mars. Materials Today: Proceedings 2021; 47: 4149–4154. doi: 10.1016/j.matpr.2021.04.059

51. Guo W, Li B, Zhou Q. An intelligent monitoring system of grinding wheel wear based on two-stage feature selection and long short-term memory network. Proceedings of the Institution of Mechanical Engineers 2019; 233(13): 2436–2446. doi: 10.1177/0954405419840556

52. Zhang X, Chen H, Xu J, et al. A novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machine. Journal of Materials Processing Technology 2018; 260: 9–19. doi: 10.1016/j.jmatprotec.2018.05.013

53. Miao Z, Zou Z, Gao Z, et al. Health monitoring and diagnosis system for heavy roll grinding machine. Advances in Mechanical Engineering 2016; 8(5): 1–9. doi: 10.1177/1687814016650419

54. Cheng C, Li J, Liu Y, et al. Deep convolutional neural network-based in-process tool condition monitoring in abrasive belt grinding. Computers in Industry 2019; 106: 1–13. doi: 10.1016/j.compind.2018.12.002

55. Chen J, Chen H, Xu J, et al. Acoustic signal-based tool condition monitoring in belt grinding of nickel-based superalloys using RF classifier and MLR algorithm. International Journal of Advanced Manufacturing Technology 2018; 98: 859–872. doi: 10.1007/s00170-018-2270-9

56. Hübner HB, da Silva RB, Duarte MAV, et al. A comparative study of two indirect methods to monitor surface integrity of ground components. Structural Health Monitoring 2020; 19(6): 1856–1870. doi: 10.1177/1475921720903442

57. Yang Z, Yu Z. Grinding wheel wear monitoring based on wavelet analysis and support vector machine. International Journal of Advanced Manufacturing Technology 2012; 62: 107–121. doi: 10.1007/s00170-011-3797-1

58. Asiltürk I, Tinkir M, Monuayri HEI, Çelik L. An intelligent system approach for surface roughness and vibrations prediction in cylindrical grinding. International Journal of Computer Integrated Manufacturing 2012; 25(8): 750–759. doi: 10.1080/0951192X.2012.665185

59. Wegener K, Hoffmeister HW, Karpuschewski B, et al. Conditioning and monitoring of grinding wheels. Cirp Annals-Manufacturing Technology 2011; 60(2): 757–777. doi: 10.1016/j.cirp.2011.05.003

60. Nakai ME, Aguiar PR, Guillardi H, et al. Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics. Expert Systems with Applications 2015; 42(20): 7026–7035. doi: 10.1016/j.eswa.2015.05.008

61. Liu Y, Wang X, Lin J, Zhao W. Early chatter detection in gear grinding process using servo feed motor current. International Journal of Advanced Manufacturing Technology 2016; 83: 1801–1810. doi: 10.1007/s00170-015-7687-9

62. Parenti P, Leonesio M, Cassinari A, et al. A model-based approach for online estimation of surface waviness in roll grinding. International Journal of Advanced Manufacturing Technology 2015; 79: 1195–1208. doi: 10.1007/s00170-015-6864-1

63. Humphreys I, Eisenblätter G, O’Donnell GE. FPGA based monitoring platform for condition monitoring in cylindrical grinding. Procedia CIRP 2014; 14: 448–453. doi: 10.1016/j.procir.2014.03.022

64. Oo HH, Wang W, Liu Z. Tool wear monitoring system in belt grinding based on image-processing techniques. International Journal of Advanced Manufacturing Technology 2020; 111: 2215–2229. doi: 10.1007/s00170-020-06254-1

65. Pandey V, Bekele A, Ahmed GMS, et al. An application of conjugate gradient technique for determination of thermal conductivity as an inverse engineering problem. Materials Today: Proceedings 2021; 47: 3082–3087. doi: 10.1016/j.matpr.2021.06.073

66. Vates UK, Kanu NJ, Gupta E, et al. Optimization of electro discharge critical process parameters in tungsten carbide drilling using L9 Taguchi approach. Materials Today: Proceedings 2021; 47: 3227–3234. doi: 10.1016/j.matpr.2021.06.438.

67. Kanu NJ, Bapat S, Deodhar H, et al. An insight into processing and properties of smart carbon nanotubes reinforced nanocomposites. Smart Science 2021; 10(1): 40–55. doi: 10.1080/23080477.2021.1972913

68. Kanu NJ, Lal A. Nonlinear static analysis of CNT/nanoclay particles reinforced polymer matrix composite plate using secant function based shear deformation theory. Smart Science 2022; 10(4): 301–312. doi: 10.1080/23080477.2022.2066052

69. Lal A, Kanu NJ. The nonlinear deflection response of CNT/nanoclay reinforced polymer hybrid composite plate under different loading conditions. Iop Conference Series: Materials Science and Engineering 2020; 814: 012033. doi: 10.1088/1757-899X/814/1/012033

70. Asre CM, Kurkute VK, Kanu NJ. Power generation with the application of vortex wind turbine. Materials Today: Proceedings 2021; 56: 2428–2436. doi: 10.1016/j.matpr.2021.08.228

71. Vates UK, Kanu NJ, Gupta E, et al. Optimization of FDM 3D printing process parameters on ABS based bone hammer using RSM technique. IOP Conference Series: Materials Science and Engineering 2021; 1206: 012001. doi: 10.1088/1757-899X/1206/1/012001

72. Sakhare SA, Pendkar SM, Kanu NJ, et al. Design suggestions on modified self-sustainable space toilet. SN Applied Sciences 2022; 4: 13. doi: 10.1007/s42452-021-04878-w

73. Kanu NJ, Lal A. Post buckling responses of carbon nanotubes’ fiber reinforced and nanoclay modified polymer matrix hybrid composite plate under in-plane buckling load using the higher order shear deformation theory. Mechanics Based Design of Structures and Machines 2022; doi: 10.1080/15397734.2022.2126985

74. Halwe-Pandharikar A, Deshmukh SJ, Kanu NJ. Numerical investigation and experimental analysis of nanoparticles modified unique waste cooking oil biodiesel fueled C. I. Engine using single zone thermodynamic model for sustainable development. AIP Advances 2022; 12(9): 095218. doi: 10.1063/5.0103308

75. Kanu NJ, Patwardhan D, Gupta E, et al. Numerical investigations of stress-deformation responses in fractured paediatric bones with prosthetic bone plates. IOP Conference Series: Materials Science and Engineering 2020; 814: 012038. doi: 10.1088/1757-899X/814/1/012038

76. Kanu NJ, Gupta E, Vates UK, Singh GK. Electrospinning process parameters optimization for biofunctional curcumin/gelatin nanofibers. Materials Research Express 2020; 7: 035022. doi: 10.1088/2053-1591/ab7f60

77. Gupta E, Kanu NJ, Munot A, et al. Stochastic and deterministic mathematical modeling and simulation to evaluate the novel COVID-19 pandemic control measures. American Journal of Infectious Diseases 2020; 16(4): 135–170. doi: 10.3844/ajidsp.2020.135.170

78. Kanu NJ, Patwardhan D, Gupta E, et al. Finite element analysis of mechanical response of fracture fixation functionally graded bone plate at paediatric femur bone fracture site under compressive and torsional loadings. Materials Today: Proceedings 2021; 38: 2817–2823. doi: 10.1016/j.matpr.2020.08.740

79. Pandey V, Kanu NJ, Singh GK, Gadissa B. AZ31-alloy, H13-die combination heat transfer characteristics by using inverse heat conduction algorithm. Materials Today: Proceedings 2021; 44: 4762–4766. doi: 10.1016/j.matpr.2020.11.258

80. Chauhan A, Vates UK, Kanu NJ, et al. Fabrication and characterization of novel nitinol particulate reinforced aluminium alloy metal matrix composites (NiTip/AA6061 MMCs). Materials Today: Proceedings 2021; 38: 3027–3034. doi: 10.1016/j.matpr.2020.09.326

81. Daniel NA, Vates UK, Sharma BP, et al. Optimization of Inconel die-in EDD steel deep drawing with influence of punch coating using RSM. In: Kumar Phanden R, Mathiyazhagan K, Kumar R, et al. (editors). Advances in Industrial and Production Engineering, Select Proceedings of FLAME 2020 Lecture Notes in Mechanical Engineering; 18 February 2021; Singapore. Springer; 2021. pp. 721–738.

82. Jain N, Kanu NJ. The potential application of carbon nanotubes in water treatment: A state-of-the-art-review. Materials Today: Proceedings 2021; 43: 2998–3005. doi: 10.1016/j.matpr.2021.01.331

83. Lee ET, Fan Z, Sencer B. Real-time grinding wheel condition monitoring using linear imaging sensor. Procedia Manufacturing 2020; 49: 139–143. doi: 10.1016/j.promfg.2020.07.009

84. Kanu NJ, Gupta E, Sutar V, et al. An insight into biofunctional curcumin/gelatin nanofibers. In: Kumar B (editor). Nanofibers Synthesis, Properties and Applications. IntechOpen; 2021.

85. Kanu NJ, Patil SA, Sutar V, et al. Design and CFD analyses of aluminium alloy-based vortex tubes with multiple inlet nozzles for their optimum performances in sustainable applications. Materials Today: Proceedings 2021; 47: 2808–2813. doi: 10.1016/j.matpr.2021.03.482

86. Sauter E, Sarikaya E, Winter M, Wegener K. In-process detection of grinding burn using machine learning. International Journal of Advanced Manufacturing Technology 2021; 115: 2281–2297. doi: 10.1007/s00170-021-06896-9

87. Uçar F, Kati N. Machine learning based predictive model for surface roughness in cylindrical grinding of Al based metal matrix composite. European Journal of Technique 2020; 10(2): 415–430. doi: 10.36222/ejt.773093

88. Hübner HB, Duarte MAV, Silva RB. Automatic grinding burn recognition based on time-frequency analysis and convolutional neural networks. International Journal of Advanced Manufacturing Technology 2020; 110: 1833–1849. doi: 10.1007/s00170-020-05902-w

89. Cheng C, Li J, Liu Y, et al. An online belt wear monitoring method for abrasive belt grinding under varying grinding parameters. Journal of Manufacturing Processes 2020; 50: 80–89. doi: 10.1016/j.jmapro.2019.12.034

90. Maier M, Rupenyan A, Bobst C, Wegener K. Self-optimizing grinding machines using Gaussian process models and constrained bayesian optimization. International Journal of Advanced Manufacturing Technology 2020; 108: 539–552. doi: 10.1007/s00170-020-05369-9

91. Kanu NJ, Gupta E, Vates UK, Singh GK. Chapter three—An insight into smart self-lubricating composites. Smart Polymer Nanocomposites 2021; 85–101. doi: 10.1016/B978-0-12-819961-9.00012-8

92. Kadam S, Chavan S, Kanu NJ. An insight into advance self-healing composites. Materials Research Express 2021; 8: 052001. doi: 10.1088/2053-1591/abfba5

93. Halwe AD, Deshmukh SJ, Kanu NJ, et al. Optimization of the novel hydrodynamic cavitation based waste cooking oil biodiesel production process parameters using integrated L9 taguchi and RSM approach. Materials Today: Proceedings 2021; 47: 5934–5941. doi: 10.1016/j.matpr.2021.04.484

94. Kumbhalkar MA, Rambhad KS, Kanu NJ. An insight into biomechanical study for replacement of knee joint. Materials Today: Proceedings 2021; 47: 2957–2965. doi: 10.1016/j.matpr.2021.05.202

95. Kanu NJ, Guluwadi S, Pandey V, Suyambazhahan S. Experimental investigation of emission characteristics on can-combustor using jatropha based bio-derived synthetic paraffinic kerosene. Smart Science 2021; 9(4): 305–316. doi: 10.1080/23080477.2021.1938503

96. Jain N, Gupta E, Kanu NJ. Plethora of carbon nanotubes applications in various fields—A state-of-the-art-review. Smart Science 2021; 9(4): 305–316. doi: 10.1080/23080477.2021.1940752

97. Kale SM, Kirange PM, Kale TV, et al. Synthesis of ultrathin ZnO, nylon-6,6 and carbon nanofibers using electrospinning method for novel applications. Materials Today: Proceedings 2021; 47: 3186–3189. doi: 10.1016/j.matpr.2021.06.289

98. Ayushi, Vates UK, Mishra S, Kanu NJ. Biomimetic 4D printed materials: A state-of-the-art review on concepts, opportunities, and challenges. Materials Today: Proceedings 2021; 47: 3313–3319. doi: 10.1016/j.matpr.2021.07.148

99. Gupta E, Kanu NJ. An insight into the simplified RP transmission network, concise baseline and SIR models for simulating the transmissibility of the novel coronavirus disease 2019 (COVID-19) outbreak. American Journal of Infectious Diseases 2020; 16(2): 89–108. doi: 10.3844/ajidsp.2020.89.108

100. Chavan S, Kanu NJ, Shendokar S, et al. An Insight into Nylon 6,6 nanofibers interleaved E-glass fiber reinforced epoxy composites. Journal of the Institution of Engineers (India): Series C 2022; 104: 15–44. doi: 10.1007/s40032-022-00882-0

101. Kanu NJ, Gupta E, Vates UK, Singh GK. An insight into biomimetic 4D printing. RSC Advances 2019; 9: 38209–38226. doi: 10.1039/C9RA07342F

102. Kanu NJ, Gupta E, Vates UK, Singh GK. Self-healing composites: A state-of-the-art review. Composites Part A: Applied Science and Manufacturing 2019; 121: 474–486. doi: 10.1016/j.compositesa.2019.04.012

103. Halwe AD, Deshmukh SJ, Kanu NJ, Gawande JS. Optimization of combustion characteristics of novel hydrodynamic cavitation based waste cooking oil biodiesel fueled CI engine. SN Applied Sciences 2023; 5: 65. doi: org/10.1007/s42452-023-05284-0

104. Chatur MG, Maheshwari A, Kanu NJ. Comprehensive analysis of the behavior of waste cooking oil biodiesel in CI engines modified using CuO nanoparticles with varying fuel injection pressure. Materials Today: Proceedings 2023; in press. doi: 10.1016/j.matpr.2023.03.620

105. Kharadi F, Bhojwani V, Dixit P, et al. Experimental study of the operating parameters on the performance of a single-stage stirling cryocooler cooling infrared sensor for space application. Aircraft Engineering and Aerospace Technology 2023; ahead-of-press. doi: 10.1108/AEAT-02-2023-0051

106. Lee CH, Jwo JS, Hsieh HY, Lin CS. An intelligent system for grinding wheel condition monitoring based on machining sound and deep learning. IEEE Access 2020; 8: 58279–58289. doi: 10.1109/ACCESS.2020.2982800




DOI: https://doi.org/10.32629/jai.v6i3.622

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Shrinath M. Patil-Mangore, Niranjan L. Shegokar, Nand Jee Kanu

License URL: https://creativecommons.org/licenses/by-nc/4.0