Can Artificial Intelligence help a clinical laboratory to draw useful information from limited data sets? Application to mixed connective tissue disease
Abstract
Keywords
Full Text:
PDFReferences
1. Chamberlain G, Banks J. Assessment of the Apgar score. The Lancet 1974; 304(7891): 1225–1228. doi: 10.1016/s0140-6736(74)90745-4
2. Jameson JL, Fauci A, Kasper D, et al. Harrison’s Principles of Internal Medicine, 20th ed. McGraw Hill/Medical; 2018.
3. Petri M, Orbai AM, Alarcón GS, et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis & Rheumatism 2012; 64(8): 2677–2686. doi: 10.1002/art.34473
4. Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer; 2009.
5. Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. The Lancet 2019; 394(10201): 861–867. doi: 10.1016/S0140-6736(19)31721-0
6. Shen B, Yi X, Sun Y, et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 2020; 182(1): 59–72. doi: 10.1016/j.cell.2020.05.032
7. Topol EJ. What’s lurking in your electrocardiogram?. The Lancet 2021; 397(10276): 785. doi: 10.1016/S0140-6736(21)00452-9
8. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA 2018; 319(13): 1317–1318. doi: 10.1001/jama.2017.18391
9. Christodoulou E, Ma J, Collins GS, et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. Journal of Clinical Epidemiology 2019; 110: 12–22. doi: 10.1016/j.jclinepi.2019.02.004
10. Finlayson SG, Subbaswamy A, Singh K, et al. The clinician and dataset shift in artificial intelligence. New England Journal of Medcine 2021; 385: 283–286. doi: 10.1056/NEJMc2104626
11. Tonner PD, Pressman A, Ross D. Interpretable modeling of genotype–phenotype landscapes with state-of-the-art predictive power. Proceedings of the National Academy of Sciences of the United States of America 2022; 119(26): e2114021119. doi: 10.1073/pnas.2114021119
12. van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints. BMC Medical Research Methodology 2014; 14(1): 137. doi: 10.1186/1471-2288-14-137
13. Gennatas ED, Friedman JH, Ungar LH, et al. Expert-augmented machine learning. Proceedings of the National Academy of Sciences of the United States of America 2020; 117(9): 4571–4577. doi: 10.1073/pnas.1906831117
14. Steyvers M, Tejeda H, Kerrigan G, Smyth P. Bayesian modeling of human–AI complementarity. Proceedings of the National Academy of Sciences of the United States of America 2022; 119(11): e2111547119. doi: 10.1073/pnas.2111547119
15. Rose NR, Friedman H, Fahey JL. Manual of Clinical Laboratory Immunology, 3rd ed. American Society for Microbiology; 1986.
16. Chan EKL, Damoiseaux J, Carballo OG, et al. Report of the first international consensus on standardized nomenclature of antinuclear antibody HEp-2 cell patterns 2014–2015. Frontiers in Immunology 2015; 6: 412. doi: 10.3389/fimmu.2015.00412
17. Stark H, Dube P, Lührmann R, Kastner B. Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature 2001; 409: 539–542. doi: 10.1038/35054102
18. Sharp GC, Irvin WS, LaRoque RL, et al. Association of autoantibodies to different nuclear antigens with clinical patterns of rheumatic disease and responsiveness to therapy. The Journal of Clinical Investigation 1971; 50(2): 350–359. doi: 10.1172/JCI106502
19. Sharp GC, Irvin WS, Tan EM, et al. Mixed connective tissue disease—An apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA). The American Journal of Medicine 1972; 52(2): 148–159. doi: 10.1016/0002-9343(72)90064-2
20. Cappelli S, Randone SB, Martinović D, et al. “To Be or Not To Be,” ten years after: Evidence for mixed connective tissue disease as a distinct entity. Seminars in Arthritis and Rheumatism 2012; 41(4): 589–598. doi: 10.1016/j.semarthrit.2011.07.010
21. Ungprasert P, Crowson CS, Chowdhary VR, et al. Epidemiology of mixed connective tissue disease, 1985–2014: A population-based study: Epidemiology of MCTD. Arthritis Care & Research 2016; 68(12): 1843–1848. doi: 10.1002/acr.22872
22. Kasukawa R. Mixed connective tissue disease. Internal Medicine 1999; 38(5): 386–393. doi: 10.2169/internalmedicine.38.386
23. John KJ, Sadiq M, George T, et al. Clinical and immunological profile of mixed connective tissue disease and a comparison of four diagnostic criteria. International Journal of Rheumatology 2020; 2020. doi: 10.1155/2020/9692030
24. Lemrle J, Renaudineau Y. Anti-Sm and Anti-U1-RNP antibodies: An update. Lupus: Open Access 2016; 1: 3.
25. Damoiseaux J, Andrade LEC, Carballo OG, et al. Clinical relevance of HEp-2 indirect immunofluorescent patterns: The international consensus on ANA patterns (ICAP) perspective. Annals of the Rheumatic Diseases 2019; 78: 879–889. doi: 10.1136/annrheumdis-2018-214436
26. Cinquanta L, Bizzaro N, Pesce G. Standardization and quality assessment under the perspective of automated computer-assisted HEp-2 immunofluorescence assay systems. Frontiers in Immunology 2021; 12: 638863. doi: 10.3389/fimmu.2021.638863
27. Snedecor GW, Cochran WG. Statistical methods, 7th ed. Iowa State; 1980.
28. Müller AC, Guido S. Introduction to Machine Learning with Python: A Guide for Data Scientists, 1st ed. O’Reilly Media; 2016.
29. Joshi P. Artificial Intelligence with Python: Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you. Packt Publishing Limited; 2017.
30. Géron A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3rd ed. O’Reilly Media; 2023.
31. Fleetwood O, Kasimova MA, Westerlund AM, Delemotte L. Molecular insights from conformational ensembles via machine learning. Biophysical Journal 2020; 118: 765–780. doi: 10.1016/j.bpj.2019.12.016
32. Achar SR, Bourassa FXP, Rademaker TJ, et al. Universal antigen encoding of T cell activation from high-dimensional cytokine dynamics. Science 2022; 376: 880–884. doi: 10.1126/science.abl5311.
33. Provost F, Fawcett T. Data Science for Business: What You Need to Know About Data Mining and Data-Analytic Thinking, 1st ed. O’Reilly Media; 2013.
34. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444. doi: 10.1038/nature14539
35. Goodfellow I, Bengio Y, Courville A. Deep learning. In: Adaptive computation and machine learning. The MIT Press; 2016.
36. Gibney E. Could machine learning fuel a reproducibility crisis in science?. Nature 2022; 608: 250–251. doi: 10.1038/d41586-022-02035-w
37. de Hond AAH, Steyerberg EW, van Calster B. Interpreting area under the receiver operating characteristic curve. The Lancet Digital Health 2022; 4(12): e853–e855. doi: 10.1016/S2589-7500(22)00188-1
38. Booth S, Park KW, Lee CS, Ko JH. Predicting cognitive decline in Parkinson’s disease using FDG-PET-based supervised learning. Journal of Clinical Investigation 2022; 132(20): e157074. doi: 10.1172/JCI157074
39. Diebold M, Galli E, Kopf A, et al. High-dimensional immune profiling identifies a biomarker to monitor dimethyl fumarate response in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America 2022; 119(31): e2205042119. doi: 10.1073/pnas.2205042119
40. Bertin D, Jourde-Chiche N, Bongrand P, Bardin N. Original approach for automated quantification of antinuclear autoantibodies by indirect immunofluorescence. Clinical and Developmental Immunology 2013; 2013: 1–8. doi: 10.1155/2013/182172
41. Bertin D, Mouhajir Y, Bongrand P, Bardin N. ICARE improves antinuclear antibody detection by overcoming the barriers preventing accreditation. Clinica Chimica Acta 2016; 454: 57–61. doi: 10.1016/j.cca.2015.12.034
42. Hasan G, Ferucci ED, Buyon JP, et al. Population-based prevalence and incidence estimates of mixed connective tissue disease from the manhattan lupus surveillance program. Rheumatology 2022. doi: 10.1093/rheumatology/keac703
43. Kheterpal S, Singh K, Topol EJ. Digitising the prediction and management of sepsis. The Lancet 2022; 399(10334): 1459. doi: 10.1016/S0140-6736(22)00658-4
DOI: https://doi.org/10.32629/jai.v6i2.664
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Daniel Bertin, Pierre Bongrand, Nathalie Bardin
License URL: https://creativecommons.org/licenses/by-nc/4.0