banner

Contactless methods to acquire heart and respiratory signals—A review

Pushparaj Pal, Amod Kumar, Garima Saini

Abstract


The vital sign is the most important parameter for the internal health status of any subject in time. Every person is witnessed of COVID-19 global pandemic viruses. The world population has faced this problem globally. Collecting the infected person’s sample data in a contact-based approach may lead to the spreading of the disease. On the other hand, if we use a non-contact-based approach for the collection, it is somehow far better and breaks the chain of virus spreading. This radar-based technique is preferred in non-contact vital sign detection so that any person gets to their health status prior and according to that doctor can diagnose the proper treatment. The radar-based signal is targeted to the subject’s chest. Due to the chest wall displacement main vital sign parameters of the heart and respiration of the individual’s health are being captured. These captured signals are called vital signs, with this it is very helpful that the pre-diagnosis and treatment can be recommended by doctors or health service providers. Some patients due to their movement may be older or children for a long-time use skin irritation or allergy type of problems may face. On the other hand, some patients may be COVID-19 infected disease and burn patients. Hence, it is not possible to connect as both cases are unexpected for the required purpose. For constant and continuous measurement, existing contact-based methods are not fruitful hence non- contact-based approach is adopted. Non-contact-based vital sign detection is preferably due to several problems occurring. This paper presents a state-of-the-art review of recent monitoring methods and techniques for health monitoring in medical fields of operations. These methods and techniques are used as a tool to acquire, visualize and analyze the sampled data collected in any environment either indoor or outdoor.

Keywords


Healthcare; Non-contact; Doppler Radar; Continuous Wave; Techniques and Methods; Vital Sign Detection; Respiration and Heart Beat Detection

Full Text:

PDF

References


1. Fuentes-Aguilar RQ, Pérez-Espinosa H, Filigrana-de-la-Cruz MA. Chapter 2—Biosignals analysis (heart, phonatory system, and muscles). In: Torres-García AA, Reyes-García CA, Villaseñor-Pineda L, Mendoza-Montoya O (editors). Biosignal processing and classification using computational learning and intelligence. Cambridge, Massachusetts: Academic Press; 2022. p. 7–26. doi: 10.1016/B978-0-12-820125-1.00011-7.

2. Soon S, Svavarsdottir H, Downey C, Jayne DG. Wearable devices for remote vital signs monitoring in the outpatient setting: An overview of the field. BMJ Innovations 2020; 6(2): 55–71. doi: 10.1136/bmjinnov-2019-000354.

3. Ravanshad N, Rezaee-Dehsorkh H. Chapter 12—Level-crossing sampling: Principles, circuits, and processing for healthcare applications. In: Khosravy M, Dey N, Duque CA (editors). Compressive sensing in healthcare. Cambridge, Massachusetts: Academic Press; 2020. p. 223–246. doi: 10.1016/B978-0-12-821247-9.00017-2.

4. Panganiban EB, Paglinawan AC, Chung WY, Paa GLS. ECG diagnostic support system (EDSS): A deep learning neural network based classification system for detecting ECG abnormal rhythms from a low-powered wearable biosensors. Sensing and Bio-Sensing Research 2021; 31: 100398. doi: 10.1016/j.sbsr.2021.100398.

5. Kornej J, Murabito JM, Zhang Y, et al. No evidence of association between habitual physical activity and ECG traits: Insights from the electronic Framingham Heart Study. Cardiovascular Digital Health Journal 2022; 3(1): 56–58. doi: 10.1016/j.cvdhj.2021.11.004.

6. Bijender, Kumar A. Flexible and wearable capacitive pressure sensor for blood pressure monitoring. Sensing and Bio-Sensing Research 2021; 33: 100434. doi: 10.1016/j.sbsr.2021.100434.

7. Bae TW, Kwon KK, Kim KH. Vital block and vital sign server for ECG and vital sign monitoring in a portable u-Vital system. Sensors 2020; 20(4): 1089. doi: 10.3390/s20041089.

8. Fathy RA, Wang H, Ren L. Comparison of UWB Doppler radar and camera based photoplethysmography in non-contact multiple heartbeats detection. In: 2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS); 2016 Jan 24–27; Austin. New York: IEEE; 2016. p. 25–28. doi: 10.1109/BIOWIRELESS.2016.7445552.

9. Rahman A, Yavari E, Singh A, et al. A Low-IF tag-based motion compensation technique for mobile doppler radar life signs monitoring. IEEE Transactions on Microwave Theory and Techniques 2015; 63(10): 3034–3041. doi: 10.1109/TMTT.2015.2471998.

10. Molinaro N, Schena E, Silvestri S, et al. Contactless vital signs monitoring from videos recorded with digital cameras: An overview. Frontiers in Physiology 2022; 13: 801709. doi: 10.3389/fphys.2022.801709.

11. Kumar M, Veeraraghavan A, Sabharwal A. DistancePPG: Robust non-contact vital signs monitoring using a camera. Biomedical Optics Express 2015; 6(5): 1565–1588. doi: 10.1364/BOE.6.001565.

12. Guo Y, Liu X, Peng S, et al. A review of wearable and unobtrusive sensing technologies for chronic disease management. Computers in Biology and Medicine 2021; 129: 104163. doi: 10.1016/j.compbiomed.2020.104163.

13. Brüser C, Antink CH, Wartzek T, et al. Ambient and unobtrusive cardiorespiratory monitoring techniques. IEEE Reviews in Biomedical Engineering 2015; 8: 30–43. doi: 10.1109/RBME.2015.2414661.

14. Ehnesh M, Abatis P, Schlindwein FS. A portable electrocardiogram for real‑time monitoring of cardiac signals. SN Applied Sciences 2020; 2: 1–11. doi: 10.1007/s42452-020-3065-9.

15. Abuella H, Ekin S. Non-contact vital signs monitoring through visible light sensing. IEEE Sensors Journal 2019; 20(7): 3859–3870. doi: 10.1109/JSEN.2019.2960194.

16. Lyu W, Chen S, Tan F, Yu C. Vital signs monitoring based on interferometric fiber optic sensors. Photonics 2022; 9(2): 50. doi: 10.3390/photonics9020050.

17. Ren L, Kong L, Foroughian F, et al. Comparison study of noncontact vital signs detection using a doppler stepped-frequency continuous-wave radar and camera-based imaging photoplethysmograph. IEEE Transactions on Microwave Theory and Techniques 2017; 65(9): 3519–3529. doi: 10.1109/TMTT.2017.2658567.

18. Arif RE, Tang MC, Su WC, et al. Designing a metasurface-based tag antenna for wearable vital sign sensors. IEEE MTT-S International Microwave Symposium 2019; 373–376. doi: 10.1109/MWSYM.2019.8700933.

19. Tarassenko L, Villarroel M, Guazzi A, et al. Non-contact video-based vital sign monitoring using ambient light and auto-regressive models. Physiological Measurement 2014; 35(5): 807. doi: 10.1088/0967-3334/35/5/807.

20. Valipour A, Maghooli K. Vital signs monitoring based on a developed accelerometer sensor for sporty purposes. Journal of Orthopaedics and Sports Medicine 2019; 1(3): 51–59. doi: 10.26502/josm.5115006.

21. Kangaslahti P, Pukala D, Gaier T, et al. Low noise amplifier for 180 GHz frequency band. In: 2008 IEEE MTT-S International Microwave Symposium Digest; 2008 Jun 15–20; Atlanta. New York: IEEE; 2008. p. 451–454. doi: 10.1109/MWSYM.2008.4633200.

22. Kao TYJ, Lin J. Vital sign detection using 60-GHz Doppler radar system. In: 2013 IEEE International Wireless Symposium (IWS); 2013 Apr 14–18; Beijing, China. New York: IEEE; 2013. doi: 10.1109/IEEE-IWS.2013.6616776.

23. Castro ID, Mercuri M, Torfs T, et al. Sensor fusion of capacitively coupled ECG and continuous-wave doppler radar for improved unobtrusive heart rate measurements. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2018; 8(2): 316–328. doi: 10.1109/JETCAS.2018.2802639.

24. Antonucci A, Corrà M, Ferrari A, et al. Performance analysis of a 60-GHz radar for indoor positioning and tracking. In: 2019 International Conference on Indoor Positioning and Indoor Navigation; 2019 Sep 30–Oct 3; Pisa. New York: IEEE; 2019. p. 1–7. doi: 10.1109/IPIN.2019.8911764.

25. Sacco G, Piuzzi E, Pittella E, Pisa S. An FMCW radar for localization and vital signs measurement for different chest orientations. Sensors 2020; 20(12): 3489. doi: 10.3390/s20123489.

26. Sadhukhan S, Paul S, Akhtar MJ. Microwave Doppler radar for monitoring of vital sign and rotational movement. In: 2021 IEEE Asia-Pacific Microwave Conference Proceedings; 2021 Nov 28–Dec 1; Brisbane. New York: IEEE; 2022. p. 61–63. doi: 10.1109/APMC52720.2021.9661592.

27. Hall T, Lie DYC, Nguyen TQ, et al. Non-contact sensor for long-term continuous vital signs monitoring: A review on intelligent phased-array doppler sensor design. Sensors 2017; 17(11): 2632. doi: 10.3390/s17112632.

28. Fang B, Lane ND, Zhang M, et al. BodyScan: Enabling radio-based sensing on wearable devices for contactless activity and vital sign monitoring. In: Agarwal S, Mascolo C (editors). MobiSys’ 16: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications and Services; 2016 Jun 25–30; Singapore. New York: Association for Computing Machinery; 2016. p. 97–110. doi: 10.1145/2906388.2906411.

29. Villarroel M, Jorge J, Meredith D, et al. Non-contact vital-sign monitoring of patients undergoing haemodialysis treatment. Scientific Reports 2020; 10(1): 1–21. doi: 10.1038/s41598-020-75152-z.

30. Raman B, Cassar MP, Tunnicliffe EM, et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. eClinicalMedicine 2021; 31: 100683. doi: 10.1016/j.eclinm.2020.100683.

31. Wang FK, Wu CTM, Horng TS, et al. Review of self-injection-locked radar systems for noncontact detection of vital signs. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 2020; 4(4): 294–307. doi: 10.1109/JERM.2020.2994821.

32. Mpanda RS, Liang Q, Xu L, et al. Investigation on various antenna design techniques for vital signs monitoring. In: 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC); 2018 Jul 21–24; Xuzhou, China. New York: IEEE; 2018. p. 1–3. doi: 10.1109/CSQRWC44005.2018.

33. Kebe M, Gadhafi R, Mohammad B, et al. Human vital signs detection methods and potential using radars: A review. Sensors 2020; 20(5): 1454. doi: 10.3390/s20051454.

34. Yue S, He H, Wang H, et al. Extracting multi-person respiration from entangled RF signals. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018; 2(2): 1–22. doi: 10.1145/3214289.

35. Gulati V, Pal PA. Survey on various change detection techniques for hyper spectral images. International Journal of Advanced Research in Computer Science and Software Engineering 2014; 4(8): 2277. doi: 10.1145/3214289.

36. Zhang L, Wang X, Hu Y, et al. Dual-frequency multi-angle ultrasonic processing technology and its real-time monitoring on physicochemical properties of raw soymilk and soybean protein. Ultrasonics Sonochemistry 2021; 80: 105803. doi: 10.1016/j.ultsonch.2021.105803.

37. Tasli HE, Gudi A, Uyl M. Remote PPG based vital sign measurement using adaptive facial regions. In: 2014 IEEE International Conference on Image Processing (ICIP); 2014 Oct 27–30; Paris. New York: IEEE; 2015. p. 1410–1414. doi: 10.1109/ICIP.2014.7025282.

38. Rohmetra H, Raghunath N, Narang P, et al. AI-enabled remote monitoring of vital signs for COVID-19: Methods, prospects and challenges. Computing 2021; 105: 783–809. doi: 10.1007/s00607-021-00937-7.

39. Bella A, Latif R, Saddik A, Jamad L. Review and evaluation of heart rate monitoring based vital signs, a case study: Covid-19 Pandemic. In: 2020 6th IEEE Congress on Information Science and Technology (CiSt); 2021 Jun 5–12; Agadir-Essaouira. New York: IEEE; 2021. p. 79–83. doi: 10.1109/CiSt49399.2021.9357302.

40. Prat A, Blanch S, Aguasca A, et al. Collimated beam FMCW radar for vital sign patient monitoring. IEEE Transactions on Antennas and Propagation 2019; 67(8): 5073–5080. doi: 10.1109/TAP.2018.2889595.

41. Alsaker M, Mueller JL. EIT images of human inspiration and expiration using a D-bar method with spatial priors. The Applied Computational Electromagnetics Society Journal 2019; 34(2): 325–330.

42. Islam SMM, Yavari E, Rahman A, et al. Separation of respiratory signatures for multiple subjects using independent component analysis with the JADE algorithm. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2018 Jul 18–21; Honolulu. New York: IEEE; 2018. p. 1234–1237. doi: 10.1109/EMBC.2018.8512583.

43. Muñoz-Ferreras JM, Peng Z, Gómez-García R, Li C. Review on advanced short-range multimode continuous-wave radar architectures for healthcare applications. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 2017; 1(1): 14–25. doi: 10.1109/JERM.2017.2735241.

44. McDonnell W, Mishra A, Li C. Comprehensive vital sign detection using a wrist wearable nonlinear target and a 5.8-GHz ISM band intermodulation radar. In: 2020 IEEE Radio and Wireless Symposium (RWS); 2020 Jan 26–29; San Antonio. New York: IEEE; 2020. p. 123–126. doi: 10.1109/RWS45077.2020.9049979.

45. Devi VK, Rahuman AK. Doppler radar system for vital sign detection of human-Literature review. Journal of Computing Technologies 2019; 8(9): 901–904.

46. Girbau D, Lázaro A, Ramos Á, Villarino R. Remote sensing of vital signs using a doppler radar and diversity to overcome null detection. IEEE Sensors Journal 2011; 12(3): 512–518. doi: 10.1109/JSEN.2011.2107736.

47. Gouveia C, Loss C, Pinho P, Vieira J. Different antenna designs for non-contact vital signs measurement: A review. Electronics 2019; 8(11): 1294. doi: 10.3390/electronics8111294.

48. Obadi AB, Soh PJ, Aldayel O, et al. A survey on vital signs detection using radar techniques and processing with FPGA implementation. IEEE Circuits and Systems Magazine 2021; 21(1): 41–74. doi: 10.1109/MCAS.2020.3027445.

49. Mobasseri BG, Amin MG. A time-frequency classifier for human gait recognition. Optics and Photonics in Global Homeland Security V and Biometric Technology for Human Identification VI. SPIE 2009; 7306: 434–442. doi: 10.1117/12.819060.

50. Saluja J, Casanova J, Lin J. A supervised machine learning algorithm for heart-rate detection using Doppler motion-sensing radar. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 2019; 4(1): 45–51. doi: 10.1109/JERM.2019.2923673.

51. Chioukh L, Boutayeb H, Wu K, Deslandes D. Monitoring vital signs using remote harmonic radar concept. In: 2011 8th European Radar Conference; 2011 Oct 12–14; Manchester. New York: IEEE; 2011. p. 1269–1272.

52. Gursale TS, Mane S. 2.4 Ghz high gain and low noise CMOS LNA. International Journal of Engineering Research & Technology 2021; 10(6): 625–628. doi: 10.17577/IJERTV10IS060283.

53. Huang JY, Hsu CC, Chang CH, Hu WW. Non-contact and real-time pulse-based radar with sensitivity improvement for vital-sign monitoring. In: 2018 Asia-Pacific Microwave Conference (APMC); 2018 Nov 6–9; Kyoto, Japan. New York: IEEE; 2018. p. 812–814. doi: 10.23919/APMC.2018.8617183.

54. Boonsong W, Senajit N, Prasongchan P. Contactless body temperature monitoring of In-Patient Department (IPD) using 2.4 GHz microwave frequency via the Internet of Things (IoT) network. Wireless Personal Communications 2022; 124(3): 1–16. doi: 10.1007/s11277-021-09438-4.

55. Panahi A, Hassanzadeh A, Moulavi A. Design of a low cost, double triangle, piezoelectric sensor for respiratory monitoring applications. Sensing and Bio-Sensing Research 2020; 30: 100378. doi: 10.1016/j.sbsr.2020.100378.

56. Lv Q, Chen L, An K, et al. Doppler vital signs detection in the presence of large-scale random body movements. IEEE Transactions on Microwave Theory and Techniques 2018; 66(9): 4261–4270. doi: 10.1109/TMTT.2018.2852625.

57. Kuo HC, Lin CC, Yu CH, et al. A fully integrated 60-GHz CMOS direct-conversion Doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection. IEEE transactions on Microwave Theory and Techniques 2016; 64(4): 1018–1028. doi: 10.1109/RFIC.2015.7337698.

58. Li C, Yu X, Lee CM, et al. High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-μm CMOS for noncontact vital sign detection. IEEE Transactions on Microwave Theory and Techniques 2010; 58(5): 1410–1419. doi: 10.1109/TMTT.2010.2042856.




DOI: https://doi.org/10.32629/jai.v6i1.715

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Pushparaj Pal, Amod Kumar, Garima Saini

License URL: https://creativecommons.org/licenses/by-nc/4.0