Contactless methods to acquire heart and respiratory signals—A review
Abstract
Keywords
Full Text:
PDFReferences
1. Fuentes-Aguilar RQ, Pérez-Espinosa H, Filigrana-de-la-Cruz MA. Chapter 2—Biosignals analysis (heart, phonatory system, and muscles). In: Torres-García AA, Reyes-García CA, Villaseñor-Pineda L, Mendoza-Montoya O (editors). Biosignal processing and classification using computational learning and intelligence. Cambridge, Massachusetts: Academic Press; 2022. p. 7–26. doi: 10.1016/B978-0-12-820125-1.00011-7.
2. Soon S, Svavarsdottir H, Downey C, Jayne DG. Wearable devices for remote vital signs monitoring in the outpatient setting: An overview of the field. BMJ Innovations 2020; 6(2): 55–71. doi: 10.1136/bmjinnov-2019-000354.
3. Ravanshad N, Rezaee-Dehsorkh H. Chapter 12—Level-crossing sampling: Principles, circuits, and processing for healthcare applications. In: Khosravy M, Dey N, Duque CA (editors). Compressive sensing in healthcare. Cambridge, Massachusetts: Academic Press; 2020. p. 223–246. doi: 10.1016/B978-0-12-821247-9.00017-2.
4. Panganiban EB, Paglinawan AC, Chung WY, Paa GLS. ECG diagnostic support system (EDSS): A deep learning neural network based classification system for detecting ECG abnormal rhythms from a low-powered wearable biosensors. Sensing and Bio-Sensing Research 2021; 31: 100398. doi: 10.1016/j.sbsr.2021.100398.
5. Kornej J, Murabito JM, Zhang Y, et al. No evidence of association between habitual physical activity and ECG traits: Insights from the electronic Framingham Heart Study. Cardiovascular Digital Health Journal 2022; 3(1): 56–58. doi: 10.1016/j.cvdhj.2021.11.004.
6. Bijender, Kumar A. Flexible and wearable capacitive pressure sensor for blood pressure monitoring. Sensing and Bio-Sensing Research 2021; 33: 100434. doi: 10.1016/j.sbsr.2021.100434.
7. Bae TW, Kwon KK, Kim KH. Vital block and vital sign server for ECG and vital sign monitoring in a portable u-Vital system. Sensors 2020; 20(4): 1089. doi: 10.3390/s20041089.
8. Fathy RA, Wang H, Ren L. Comparison of UWB Doppler radar and camera based photoplethysmography in non-contact multiple heartbeats detection. In: 2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS); 2016 Jan 24–27; Austin. New York: IEEE; 2016. p. 25–28. doi: 10.1109/BIOWIRELESS.2016.7445552.
9. Rahman A, Yavari E, Singh A, et al. A Low-IF tag-based motion compensation technique for mobile doppler radar life signs monitoring. IEEE Transactions on Microwave Theory and Techniques 2015; 63(10): 3034–3041. doi: 10.1109/TMTT.2015.2471998.
10. Molinaro N, Schena E, Silvestri S, et al. Contactless vital signs monitoring from videos recorded with digital cameras: An overview. Frontiers in Physiology 2022; 13: 801709. doi: 10.3389/fphys.2022.801709.
11. Kumar M, Veeraraghavan A, Sabharwal A. DistancePPG: Robust non-contact vital signs monitoring using a camera. Biomedical Optics Express 2015; 6(5): 1565–1588. doi: 10.1364/BOE.6.001565.
12. Guo Y, Liu X, Peng S, et al. A review of wearable and unobtrusive sensing technologies for chronic disease management. Computers in Biology and Medicine 2021; 129: 104163. doi: 10.1016/j.compbiomed.2020.104163.
13. Brüser C, Antink CH, Wartzek T, et al. Ambient and unobtrusive cardiorespiratory monitoring techniques. IEEE Reviews in Biomedical Engineering 2015; 8: 30–43. doi: 10.1109/RBME.2015.2414661.
14. Ehnesh M, Abatis P, Schlindwein FS. A portable electrocardiogram for real‑time monitoring of cardiac signals. SN Applied Sciences 2020; 2: 1–11. doi: 10.1007/s42452-020-3065-9.
15. Abuella H, Ekin S. Non-contact vital signs monitoring through visible light sensing. IEEE Sensors Journal 2019; 20(7): 3859–3870. doi: 10.1109/JSEN.2019.2960194.
16. Lyu W, Chen S, Tan F, Yu C. Vital signs monitoring based on interferometric fiber optic sensors. Photonics 2022; 9(2): 50. doi: 10.3390/photonics9020050.
17. Ren L, Kong L, Foroughian F, et al. Comparison study of noncontact vital signs detection using a doppler stepped-frequency continuous-wave radar and camera-based imaging photoplethysmograph. IEEE Transactions on Microwave Theory and Techniques 2017; 65(9): 3519–3529. doi: 10.1109/TMTT.2017.2658567.
18. Arif RE, Tang MC, Su WC, et al. Designing a metasurface-based tag antenna for wearable vital sign sensors. IEEE MTT-S International Microwave Symposium 2019; 373–376. doi: 10.1109/MWSYM.2019.8700933.
19. Tarassenko L, Villarroel M, Guazzi A, et al. Non-contact video-based vital sign monitoring using ambient light and auto-regressive models. Physiological Measurement 2014; 35(5): 807. doi: 10.1088/0967-3334/35/5/807.
20. Valipour A, Maghooli K. Vital signs monitoring based on a developed accelerometer sensor for sporty purposes. Journal of Orthopaedics and Sports Medicine 2019; 1(3): 51–59. doi: 10.26502/josm.5115006.
21. Kangaslahti P, Pukala D, Gaier T, et al. Low noise amplifier for 180 GHz frequency band. In: 2008 IEEE MTT-S International Microwave Symposium Digest; 2008 Jun 15–20; Atlanta. New York: IEEE; 2008. p. 451–454. doi: 10.1109/MWSYM.2008.4633200.
22. Kao TYJ, Lin J. Vital sign detection using 60-GHz Doppler radar system. In: 2013 IEEE International Wireless Symposium (IWS); 2013 Apr 14–18; Beijing, China. New York: IEEE; 2013. doi: 10.1109/IEEE-IWS.2013.6616776.
23. Castro ID, Mercuri M, Torfs T, et al. Sensor fusion of capacitively coupled ECG and continuous-wave doppler radar for improved unobtrusive heart rate measurements. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2018; 8(2): 316–328. doi: 10.1109/JETCAS.2018.2802639.
24. Antonucci A, Corrà M, Ferrari A, et al. Performance analysis of a 60-GHz radar for indoor positioning and tracking. In: 2019 International Conference on Indoor Positioning and Indoor Navigation; 2019 Sep 30–Oct 3; Pisa. New York: IEEE; 2019. p. 1–7. doi: 10.1109/IPIN.2019.8911764.
25. Sacco G, Piuzzi E, Pittella E, Pisa S. An FMCW radar for localization and vital signs measurement for different chest orientations. Sensors 2020; 20(12): 3489. doi: 10.3390/s20123489.
26. Sadhukhan S, Paul S, Akhtar MJ. Microwave Doppler radar for monitoring of vital sign and rotational movement. In: 2021 IEEE Asia-Pacific Microwave Conference Proceedings; 2021 Nov 28–Dec 1; Brisbane. New York: IEEE; 2022. p. 61–63. doi: 10.1109/APMC52720.2021.9661592.
27. Hall T, Lie DYC, Nguyen TQ, et al. Non-contact sensor for long-term continuous vital signs monitoring: A review on intelligent phased-array doppler sensor design. Sensors 2017; 17(11): 2632. doi: 10.3390/s17112632.
28. Fang B, Lane ND, Zhang M, et al. BodyScan: Enabling radio-based sensing on wearable devices for contactless activity and vital sign monitoring. In: Agarwal S, Mascolo C (editors). MobiSys’ 16: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications and Services; 2016 Jun 25–30; Singapore. New York: Association for Computing Machinery; 2016. p. 97–110. doi: 10.1145/2906388.2906411.
29. Villarroel M, Jorge J, Meredith D, et al. Non-contact vital-sign monitoring of patients undergoing haemodialysis treatment. Scientific Reports 2020; 10(1): 1–21. doi: 10.1038/s41598-020-75152-z.
30. Raman B, Cassar MP, Tunnicliffe EM, et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. eClinicalMedicine 2021; 31: 100683. doi: 10.1016/j.eclinm.2020.100683.
31. Wang FK, Wu CTM, Horng TS, et al. Review of self-injection-locked radar systems for noncontact detection of vital signs. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 2020; 4(4): 294–307. doi: 10.1109/JERM.2020.2994821.
32. Mpanda RS, Liang Q, Xu L, et al. Investigation on various antenna design techniques for vital signs monitoring. In: 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC); 2018 Jul 21–24; Xuzhou, China. New York: IEEE; 2018. p. 1–3. doi: 10.1109/CSQRWC44005.2018.
33. Kebe M, Gadhafi R, Mohammad B, et al. Human vital signs detection methods and potential using radars: A review. Sensors 2020; 20(5): 1454. doi: 10.3390/s20051454.
34. Yue S, He H, Wang H, et al. Extracting multi-person respiration from entangled RF signals. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2018; 2(2): 1–22. doi: 10.1145/3214289.
35. Gulati V, Pal PA. Survey on various change detection techniques for hyper spectral images. International Journal of Advanced Research in Computer Science and Software Engineering 2014; 4(8): 2277. doi: 10.1145/3214289.
36. Zhang L, Wang X, Hu Y, et al. Dual-frequency multi-angle ultrasonic processing technology and its real-time monitoring on physicochemical properties of raw soymilk and soybean protein. Ultrasonics Sonochemistry 2021; 80: 105803. doi: 10.1016/j.ultsonch.2021.105803.
37. Tasli HE, Gudi A, Uyl M. Remote PPG based vital sign measurement using adaptive facial regions. In: 2014 IEEE International Conference on Image Processing (ICIP); 2014 Oct 27–30; Paris. New York: IEEE; 2015. p. 1410–1414. doi: 10.1109/ICIP.2014.7025282.
38. Rohmetra H, Raghunath N, Narang P, et al. AI-enabled remote monitoring of vital signs for COVID-19: Methods, prospects and challenges. Computing 2021; 105: 783–809. doi: 10.1007/s00607-021-00937-7.
39. Bella A, Latif R, Saddik A, Jamad L. Review and evaluation of heart rate monitoring based vital signs, a case study: Covid-19 Pandemic. In: 2020 6th IEEE Congress on Information Science and Technology (CiSt); 2021 Jun 5–12; Agadir-Essaouira. New York: IEEE; 2021. p. 79–83. doi: 10.1109/CiSt49399.2021.9357302.
40. Prat A, Blanch S, Aguasca A, et al. Collimated beam FMCW radar for vital sign patient monitoring. IEEE Transactions on Antennas and Propagation 2019; 67(8): 5073–5080. doi: 10.1109/TAP.2018.2889595.
41. Alsaker M, Mueller JL. EIT images of human inspiration and expiration using a D-bar method with spatial priors. The Applied Computational Electromagnetics Society Journal 2019; 34(2): 325–330.
42. Islam SMM, Yavari E, Rahman A, et al. Separation of respiratory signatures for multiple subjects using independent component analysis with the JADE algorithm. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2018 Jul 18–21; Honolulu. New York: IEEE; 2018. p. 1234–1237. doi: 10.1109/EMBC.2018.8512583.
43. Muñoz-Ferreras JM, Peng Z, Gómez-García R, Li C. Review on advanced short-range multimode continuous-wave radar architectures for healthcare applications. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 2017; 1(1): 14–25. doi: 10.1109/JERM.2017.2735241.
44. McDonnell W, Mishra A, Li C. Comprehensive vital sign detection using a wrist wearable nonlinear target and a 5.8-GHz ISM band intermodulation radar. In: 2020 IEEE Radio and Wireless Symposium (RWS); 2020 Jan 26–29; San Antonio. New York: IEEE; 2020. p. 123–126. doi: 10.1109/RWS45077.2020.9049979.
45. Devi VK, Rahuman AK. Doppler radar system for vital sign detection of human-Literature review. Journal of Computing Technologies 2019; 8(9): 901–904.
46. Girbau D, Lázaro A, Ramos Á, Villarino R. Remote sensing of vital signs using a doppler radar and diversity to overcome null detection. IEEE Sensors Journal 2011; 12(3): 512–518. doi: 10.1109/JSEN.2011.2107736.
47. Gouveia C, Loss C, Pinho P, Vieira J. Different antenna designs for non-contact vital signs measurement: A review. Electronics 2019; 8(11): 1294. doi: 10.3390/electronics8111294.
48. Obadi AB, Soh PJ, Aldayel O, et al. A survey on vital signs detection using radar techniques and processing with FPGA implementation. IEEE Circuits and Systems Magazine 2021; 21(1): 41–74. doi: 10.1109/MCAS.2020.3027445.
49. Mobasseri BG, Amin MG. A time-frequency classifier for human gait recognition. Optics and Photonics in Global Homeland Security V and Biometric Technology for Human Identification VI. SPIE 2009; 7306: 434–442. doi: 10.1117/12.819060.
50. Saluja J, Casanova J, Lin J. A supervised machine learning algorithm for heart-rate detection using Doppler motion-sensing radar. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 2019; 4(1): 45–51. doi: 10.1109/JERM.2019.2923673.
51. Chioukh L, Boutayeb H, Wu K, Deslandes D. Monitoring vital signs using remote harmonic radar concept. In: 2011 8th European Radar Conference; 2011 Oct 12–14; Manchester. New York: IEEE; 2011. p. 1269–1272.
52. Gursale TS, Mane S. 2.4 Ghz high gain and low noise CMOS LNA. International Journal of Engineering Research & Technology 2021; 10(6): 625–628. doi: 10.17577/IJERTV10IS060283.
53. Huang JY, Hsu CC, Chang CH, Hu WW. Non-contact and real-time pulse-based radar with sensitivity improvement for vital-sign monitoring. In: 2018 Asia-Pacific Microwave Conference (APMC); 2018 Nov 6–9; Kyoto, Japan. New York: IEEE; 2018. p. 812–814. doi: 10.23919/APMC.2018.8617183.
54. Boonsong W, Senajit N, Prasongchan P. Contactless body temperature monitoring of In-Patient Department (IPD) using 2.4 GHz microwave frequency via the Internet of Things (IoT) network. Wireless Personal Communications 2022; 124(3): 1–16. doi: 10.1007/s11277-021-09438-4.
55. Panahi A, Hassanzadeh A, Moulavi A. Design of a low cost, double triangle, piezoelectric sensor for respiratory monitoring applications. Sensing and Bio-Sensing Research 2020; 30: 100378. doi: 10.1016/j.sbsr.2020.100378.
56. Lv Q, Chen L, An K, et al. Doppler vital signs detection in the presence of large-scale random body movements. IEEE Transactions on Microwave Theory and Techniques 2018; 66(9): 4261–4270. doi: 10.1109/TMTT.2018.2852625.
57. Kuo HC, Lin CC, Yu CH, et al. A fully integrated 60-GHz CMOS direct-conversion Doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection. IEEE transactions on Microwave Theory and Techniques 2016; 64(4): 1018–1028. doi: 10.1109/RFIC.2015.7337698.
58. Li C, Yu X, Lee CM, et al. High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-μm CMOS for noncontact vital sign detection. IEEE Transactions on Microwave Theory and Techniques 2010; 58(5): 1410–1419. doi: 10.1109/TMTT.2010.2042856.
DOI: https://doi.org/10.32629/jai.v6i1.715
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Pushparaj Pal, Amod Kumar, Garima Saini
License URL: https://creativecommons.org/licenses/by-nc/4.0