Future fusion+: Breast cancer tissue identification and early detection of deep hybrid featured based healthcare system
Abstract
Keywords
Full Text:
PDFReferences
1. Ali I, Wani WA, Saleem K. Cancer scenario in India with future perspectives. Cancer Therapy 2011; 8(8): 56–70.
2. Urbanowicz RJ, Meeker M, La Cava W, et al. Relief-based feature selection: Introduction and review. Journal of Biomedical Informatics 2018; 85: 189–203. doi: 10.1016/j.jbi.2018.07.014
3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA: A Cancer Journal for Clinicians 2017; 67(1): 7–30. doi: 10.3322/caac.21387
4. Roy K, Banik D, Bhattacharjee D, Nasipuri M. Patch-based system for classification of breast histology images using deep learning. Computerized Medical Imaging and Graphics 2019; 71: 90–103. doi: 10.1016/j.compmedimag.2018.11.003
5. Shruthishree SH, Tiwari H. A review paper on medical image processing. International Journal of Research-Granthaalayah 2017; 5(4): 21–29. doi: 10.29121/granthaalayah.v5.i4RACSIT.2017.3344
6. He L, Long LR, Antani S, Thoma GR. Histology image analysis for carcinoma detection and grading. Computer Methods and Programs in Biomedicine 2012; 107(3): 538–556. doi: 10.1016/j.cmpb.2011.12.007
7. Veta M, Pluim JPW, Van Diest PJ, Viergever MA. Breast cancer histopathology image analysis: A review. IEEE Transactions on Bio-Medical Engineering 2014; 61(5): 1400–1411. doi: 10.1109/TBME.2014.2303852
8. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer 2018; 103: 356–387. doi: 10.1016/j.ejca.2018.07.005
9. Zhi W, Yueng HWF, Chen Z, et al. Using transfer learning with convolutional neural networks to diagnose breast cancer from histopathological images. In: Proceedings of the 24th International Conference On Neural Information Processing; 14–18 November 2017; Guangzhou, China. pp. 669–676.
10. Shruthishree SH, Tiwari H, Devaraj Verma C. Resnet deep learning technique to improve breast cancer detection on screening mammography. Journal of Critical Reviews 2023; 7(19): 8250–8271. doi: 10.31838/jcr.07.19.932
11. Srivastava A, Kumar VV, Mahesh TR, Vivek V. Automated prediction of liver disease using machine learning (ML) algorithms. In: Proceedings of 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT); 21–22 April 2022; Bhilai, India. doi: 10.1109/ICAECT54875.2022.9808059
12. Bhuiyan MNQ, Shamsujjoha M, Ripon SH, et al. Transfer learning and supervised classifier based prediction model for breast cancer. In: Big Data Analytics for Intelligent Healthcare Management. Academic Press; 2019. pp. 59–86.
13. Kharya S. Using data mining techniques for diagnosis and prognosis of cancer disease. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT) 2012; 2(2): 55–66. doi: 10.5121/ijcseit.2012.2206
14. Mathiyalagan R, Pamela Vinitha Eric, review on intrusion detection system based methods on knowledge discovery data (kdd) dataset. Journal of Critical Reviews 2020; 7(10): 3023–3029.
15. Fenton JJ, Taplin SH, Carney PA, et al. Influence of computer-aided detection on performance of screening mammography. New England Journal of Medicine 2007; 356(14): 1399–1409. doi: 10.1056/NEJMoa066099
16. Cole EB, Zhang Z, Marques HS, et al. Impact of computer-aided detection systems on radiologist accuracy with digital mammography. American Journal of Roentgenology 2014; 203(4): 909–916. doi: 10.2214/AJR.12.10187
17. Lehman CD, Wellman RD, Buist DSM, et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Internal Medicine 2015; 175(11): 1828–1837. doi: 10.1001/jamainternmed.2015.5231
18. Madhuri GS, Mahesh TR, Vivek V. A novel approach for automatic brain tumor detection using machine learning algorithms. In: Big Data Management in Sensing. River Publishers; 2021. pp. 87–101.
19. Aboutalib SS, Mohamed AA, Berg WA, et al. Deep learning to distinguish recalled but benign mammography images in breast cancer screening. Clinical Cancer Research 2018; 24(23): 5902–5909. doi: 10.1158/1078-0432.CCR-18-1115
20. Shruthishree SH, Harshvardhan T, Devaraj V. Integrated IoT-based healthcare system for the early detection of breast cancer using intelligent diagnostic system. Journal of Machine and Computing 2023; 27–37. doi: 10.53759/7669/jmc202303004
21. Khan S, Islam N, Jan Z, et al. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognition Letters 2019; 125(1): 1–6. doi: 10.1016/j.patrec.2019.03.022
22. Spanhol FA, Oliveira LS, Petitjean C, Heutte L. Breast cancer histopathological image classification using convolutional neural networks. In: Proceedings of 2016 International Joint Conference On Neural Networks; 24–29 July 2016; Vancouver, BC, Canada. pp. 2560–2567.
23. Devarajan D, Alex DS, Mahesh TR, et al. Cervical cancer diagnosis using intelligent living behavior of artificial jellyfish optimized with artificial neural network. IEEE Access 2022; 10: 126957–126968. doi: 10.1109/ACCESS.2022.3221451
24. Li Y, Wu J, Wu Q. Classification of breast cancer histology images using multi-size and discriminative patches based on deep learning. IEEE Access 2019; 7: 21400–21408. doi: 10.1109/ACCESS.2019.2898044
25. Cascianelli S, Bello-Cerezo R, Bianconi F, et al. Dimensionality reduction strategies for CNN-based classification of histopathological images. In: International Conference on Intelligent Interactive Multimedia Systems and Services. Springer; 2019. pp. 21–30.
26. Mahesh TR, Kaladevi AC, Balajee JM, et al. An efficient ensemble method using k-fold cross validation for the early detection of benign and malignant breast cancer. International Journal of Integrated Engineering 2022; 14(7): 204–216.
27. Bhattacharjee S, Mukherjee J, Nag S, et al. Review on histopathological slide analysis using digital microscopy. International Journal of Advanced Science and Technology 2014; 62: 65–96. doi: 10.14257/ijast.2014.62.06
28. Ramakrishna MT, Venkatesan VK, Izonin I, et al. Homogeneous Adaboost Ensemble machine learning algorithms with reduced entropy on balanced data. Entropy 2023; 25(2): 245. doi: 10.3390/e25020245
29. Bergmeir C, Silvente MG, Benítez JM. Segmentation of cervical cell nuclei in high-resolution microscopic images: A new algorithm and a web-based software framework. Computer Methods and Programs in Biomedicine 2012; 107(3): 497–512. doi: 10.1016/j.cmpb.2011.09.017
30. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Transactions on Systems Man and Cybernetics 1973; 3(6): 610–621.
31. Hang PW, Lai YH. Effective segmentation and classification for HCC biopsy images. Pattern Recognition 2010; 43(4): 1550–1563. doi: 10.1016/j.patcog.2009.10.014
32. Landini G, Randell DA, Breckon TP, Han JW. Morphologic characterization of cell neighborhoods in neoplastic and preneoplastic epithelium. Analytical and Quantitative Cytology and Histology 2010; 32(1): 30–38. doi: 10.1165/rcmb.2008-0488OC
33. Devaraj VC, Shruthishree SH, Harshvardhan T. AlexResNet+: A deep hybrid featured machine learning model for breast cancer tissue classification. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 2021; 12(6): 2420–2438. doi: 10.17762/turcomat.v12i6.5686
DOI: https://doi.org/10.32629/jai.v6i3.789
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Shruthishree Surendrarao Honnahalli, Harshvardhan Tiwari, Devaraj Verma Chitragar
License URL: https://creativecommons.org/licenses/by-nc/4.0