banner

DFDTA-MultiAtt: Multi-attention based deep learning ensemble fusion network for drug target affinity prediction

Balanand Jha, Akshay Deepak, Vikash Kumar, Gopalakrishnan Krishnasamy

Abstract


An essential step in the drug development process is the accurate detection of drug-target interactions (DTI). The importance of binding affinity values in understanding protein-ligand interactions was previously disregarded, and DTI prediction was only seen as a binary classification problem. In this regard, we introduced the DFDTA-MultiAtt model for predicting the drug target binding affinity in two stages using the structural and sequential information. The first step of the first stage involves retrieving features from sequence data using a bi-directional long short term memory (Bi-LSTM) architecture together with a multi-attention module and dilated convolutional neural network (dilated-CNN) architecture, and the second step features are learnt from structure representation once again using a dilated-CNN. To predict the binding affinity, the second stage uses an ensemble learning model. The proposed model also produces findings with a greater overall accuracy when compared to contemporary state-of-the-art methods. The model generates an enormous +0.006 concordance index (CI) score on the Davis dataset and reduces the mean square error (MSE) by 0.174 on the KIBA dataset.


Keywords


drug-target interaction; multi-attention; dilated CNN; Bi-LSTM

Full Text:

PDF

References


1. Zhao L, Wang J, Pang L, et al. GANsDTA: Predicting drug-target binding affinity using GANs. Frontiers in Genetics 2020; 10: 1243. doi: 10.3389/fgene.2019.01243

2. Wan F, Zeng J. Deep learning with feature embedding for compound-protein interaction prediction. bioRxiv 2016; 033–086. doi: 10.1101/086033

3. Atias N, Sharan R. An algorithmic framework for predicting side effects of drugs. Journal of Computational Biology 2011; 18(3): 207–218. doi: 10.1089/cmb.2010.0255

4. Öztürk H, Ozkirimli E, Özgür A. A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction. BMC Bioinformatics 2016; 17(1): 128. doi: 10.1186/s12859-016-0977-x

5. Iorio F, Tagliaferri R, di Bernardo D. Identifying network of drug mode of action by gene expression profiling. Journal of Computational Biology 2009; 16(2): 241–251. doi: 10.1089/cmb.2008.10TT

6. Keum J, Nam H. Self-BLM: Prediction of drug-target interactions via self-training SVM. PloS One 2017; 12(2): e0171839. doi: 10.1371/journal.pone.0171839

7. Cao DS, Zhang LX, Tan GS, et al. Computational prediction of drug—Target interactions using chemical, biological, and network features. Molecular Informatics 2014; 33(10): 669–681. doi: 10.1002/minf.201400009

8. Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug-target interaction predictions. Brief Bioinformatics 2015; 16(2): 325–337. doi: 10.1093/bib/bbu010

9. He T, Heidemeyer M, Ban F, et al. SimBoost: A read-across approach for predicting drug-target binding affinities using gradient boosting machines. Journal of Cheminformatics 2017; 9(1): 24. doi: 10.1186/s13321-017-0209-z

10. Li J, Pu Y, Tang J, et al. DeepAVP: A dual-channel deep neural network for identifying variable-length antiviral peptides. IEEE Journal of Biomedical and Health Informatics 2020; 24(10): 3012–3019. doi: 10.1109/JBHI.2020.2977091

11. Su R, Liu X, Xiao G, et al. Meta-GDBP: A high-level stacked regression model to improve anticancer drug response prediction. Briefings in Bioinformatics 2020; 21(3): 996–1005. doi: 10.1093/bib/bbz022

12. Su R, Wu H, Xu B, et al. Developing a multi-dose computational model for drug-induced hepatotoxicity prediction based on toxicogenomics data. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2019; 16(4): 1231–1239. doi: 10.1109/TCBB.2018.2858756

13. Li J, Pu Y, Tang J, et al. DeepATT: A hybrid category attention neural network for identifying functional effects of DNA sequences. Briefings in Bioinformatics 2021; 22(3): bbaa159. doi: 10.1093/bib/bbaa159

14. Wei L, Zhou C, Chen H, et al. ACPred-FL: A sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics 2018; 34(23): 4007–4016. doi: 10.1093/bioinformatics/bty451

15. Öztürk H, Özgür A, Ozkirimli E. DeepDTA: Deep drug-target binding affinity prediction. Bioinformatics 2018; 34(17): 821–829. doi: 10.1093/bioinformatics/bty593

16. Öztürk H, Ozkirimli E, Özgür A. WideDTA: Prediction of drug-target binding affinity. arXiv 2019; arXiv:1902.04166v1. doi: 10.48550/arXiv.1902.04166

17. Ru X, Ye X, Sakurai T, Zou Q. NerLTR-DTA: Drug-target binding affinity prediction based on neighbor relationship and learning to rank. Bioinformatics 2022; 38(7): 1964–1971. doi: 10.1093/bioinformatics/btac048

18. Xiaoqing R, Quan Z, Chen L, Optimization of drug–target affinity prediction methods through feature processing schemes, Bioinformatics, Volume 39, Issue 11, November 2023, btad615

19. Kumar V, Deepak A, Ranjan A, Prakash A. Lite-SeqCNN: A light-weight deep CNN architecture for protein function prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2023; 20(3): 2242–2253. doi: 10.1109/TCBB.2023.3240169

20. Pu Y, Li J, Tang J, Guo F. DeepFusionDTA: Drug-target binding affinity prediction with information fusion and hybrid deep-learning ensemble model. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2022; 19(5): 2760–2769. doi: 10.1109/TCBB.2021.3103966

21. Landrum G. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Available online: https://docplayer.net/11897218-Rdkit-a-software-suite-for-cheminformatics-computational-chemistry-and-predictive-modeling.html (accessed on 19 August 2023).

22. Thafar MA, Alshahrani M, Albaradei S, et al. Affinity2Vec: Drug-target binding affinity prediction through representation learning, graph mining, and machine learning. Scientific Reports 2022; 12(1): 4751. doi: 10.1038/s41598-022-08787-9

23. Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug-target interaction predictions. Briefings in Bioinformatics 2015; 16(2): 325–337. doi: 10.1093/bib/bbu010

24. Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nature Biotechnology 2011; 29(11): 1046–1051. doi: 10.1038/nbt.1990

25. Rogers D, Hahn M. Extended-connectivity fingerprints. Journal of Chemical Information and Modeling 2010; 50(5): 742–754. doi: 10.1021/ci100050t

26. Tang J, Szwajda A, Shakyawar S, et al. Making sense of large-scale kinase inhibitor bioactivity data sets: A comparative and integrative analysis. Journal of Chemical Information and Modeling 2014; 54(3): 735–743. doi: 10.1021/ci400709d




DOI: https://doi.org/10.32629/jai.v7i5.851

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Balanand Jha, Akshay Deepak, Vikash Kumar, Gopalakrishnan Krishnasamy

License URL: https://creativecommons.org/licenses/by-nc/4.0/