An improved fuzzy c-means-raindrop optimizer for brain magnetic resonance image segmentation
Abstract
Keywords
Full Text:
PDFReferences
1. Sran PK, Gupta S, Singh S. Segmentation based image compression of brain magnetic resonance images using visual saliency. Biomedical Signal Processing and Control 2020; 62: 102089. doi: 10.1016/j.bspc.2020.102089
2. Norouzi A, Rahim MSM, Altameem A, et al. Medical image segmentation methods, algorithms, and applications. IETE Technical Review 2014; 31(3): 199–213. doi: 10.1080/02564602.2014.906861
3. Mohammed BA, Al-ani MS. Digital medical image segmentation using fuzzy c-means clustering. UHD Journal of Science and Technology 2020; 4(1): 51–58. doi: 10.21928/uhdjst.v4n1y2020.pp51-58
4. Christ MCJ, Parvathi RMS. Fuzzy c-means algorithm for medical image segmentation. In: Proceedings of the 2011 3rd International Conference on Electronics Computer Technology; 8–10 April 2011; Kanyakumari, India. pp. 33–36.
5. Habib RU. Optimal compression of medical images. International Journal of Advanced Computer Science and Applications(IJACSA) 2019; 10(4): 133–140. doi: 10.14569/IJACSA.2019.0100415
6. Kasute SD, Kolhekar M. ROI based medical image compression. International Journal of Scientific Research in Network Security and Communication 2017; 5(1): 6–11.
7. Guerrero-valadez JM, Martínez-rios F. Rain-fall optimization algorithm with new parallel implementations. EAI Endorsed Transactions on Energy Web 2020; 7(29): 1–13. doi: 10.4108/eai.13-7-2018.163981
8. Bindu PV, Jabeena A. Medical image compression: A leap on recent progress and publications. In: Komanapalli VLN, Sivakumaran N, Hampannavar S (editors). Advances in Automation, Signal Processing, Instrumentation, and Control. Springer, Singapore; 2021. Volume 700. pp. 2281–2289.
9. Sreenivasulu P, Varadarajan S. An efficient lossless ROI image compression using wavelet-based modified region growing algorithm. Journal of Intelligent Systems 2018; 29(1): 1063–1078. doi: 10.1515/jisys-2018-0180
10. Parikh SS, Ruiz D, Kalva H, et al. High bit-depth medical image compression with HEVC. IEEE Journal of Biomedical and Health Informatics 2018; 22(2): 552–560. doi: 10.1109/JBHI.2017.2660482
11. Chen YY. Medical image compression using DCT-based subband decomposition and modified SPIHT data organization. International Journal of Medical Informatics 2007; 76(10): 717–725. doi: 10.1016/j.ijmedinf.2006.07.002
12. UmaMaheswari S, SrinivasaRaghavan V. Lossless medical image compression algorithm using tetrolet transformation. Journal of Ambient Intelligence and Humanized Computing 2021; 12(3): 4127–4135. doi: 10.1007/s12652-020-01792-8
13. Singh M, Kumar S, Chouhan SS, Shrivastava M. Various image compression techniques: Lossy and lossless. International Journal of Computer Applications 2016; 142(6): 23–26. doi: 10.5120/ijca2016909829
14. Gonzalez RC, Woods RE. Digital Image Processing, 4th ed. Pearson Education; 2018.
15. Ramesh KKD, Kumar GK, Swapna K, et al. A review of medical image segmentation algorithms. Available online: https://publications.eai.eu/index.php/phat/article/view/1211 (accessed on 31 August 2023).
16. Matheen MA, Sundar S. Histogram and entropy oriented image coding for clustered wireless multimedia sensor networks (WMSNS). Multimedia Tools and Applications 2022; 81(27): 38253–38276. doi: 10.1007/s11042-022-13060-2
17. Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022; 44(7): 3523–3542. doi: 10.1109/TPAMI.2021.3059968
18. Saritha S, Prabha NA. A comprehensive review: Segmentation of MRI images—Brain tumor. International Journal of Imaging Systems and Technology 2016; 26(4): 295–304. doi: 10.1002/ima.22201
19. Pustokhina IV, Pustokhin DA, Nguyen PT, et al. Multi-objective rain optimization algorithm with WELM model for customer churn prediction in telecommunication sector. Complex Intelligent Systems 2021; 9: 3473–3485. doi: 10.1007/s40747-021-00353-6
20. Matheen MA, Sundar S. A novel technique to mitigate the data redundancy and to improvise network lifetime using fuzzy criminal search Ebola optimization for WMSN. Sensors 2023; 23(4): 2218. doi: 10.3390/s23042218
21. Szilagyi L, Benyo Z, Szilagy SM, Adam HS. MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 17–21 September 2003; Cancun, Mexico. pp. 724–726.
22. Horváth J. Image segmentation using fuzzy c-means. Available online: http://conf.uni-obuda.hu/sami2006/JurajHorvath.pdf (accessed on 31 August 2023).
23. Chuang K, Tzeng H, Chen S, et al. Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics 2006; 30(1): 9–15. doi: 10.1016/j.compmedimag.2005.10.001
24. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software 2014; 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007
25. Mohammdian-Khoshnoud M, Soltanian AR, Dehghan A, Farhadian M. Optimization of fuzzy c-means (FCM) clustering in cytology image segmentation using the gray wolf algorithm. BMC Molecular and Cell Biology 2022; 23(1): 9. doi: 10.1186/s12860-022-00408-7
26. Moazzeni AR, Khamehchi E. Rain optimization algorithm (ROA): A new metaheuristic method for drilling optimization solutions. Journal of Petroleum Science and Engineering 2020; 195: 107512. doi: 10.1016/j.petrol.2020.107512
27. Zotin AG, Simonov K, Kurako M, et al. Edge detection in MRI brain tumor images based on fuzzy c-means clustering. Procedia Computer Science 2018; 126: 1261–1270. doi: 10.1016/j.procs.2018.08.069
28. Mishro PK, Agrawal S, Panda R, Abraham A. A novel type-2 fuzzy c-means clustering for brain MR image segmentation. IEEE Transactions on Cybernetics 2020; 51(8): 3901–3912. doi: 10.1109/TCYB.2020.2994235
29. Zhou Z, Siddiquee MR, Tajbakhsh N, Liang J. UNet++ : Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions Medical Imaging 2020; 39(6): 1856–1867. doi: 10.1109/TMI.2019.2959609
30. Chen J, Lu Y, Yu Q, et al. TransUNet : Transformers make strong encoders for medical image segmentation. Computer Science 2011; 1–13.
31. Hesamian MH, Jia W, He X, Kennedy P. Deep learning techniques for medical image segmentation: Achievements and challenges. Journal of Digital Imaging 2019; 32(4): 582–596. doi: 10.1007/s10278-019-00227-x
32. Jha D, Smedsrud PH, Riegler MA, et al. ResUNet++: An advanced architecture for medical image segmentation. In: Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM); 9–11 December 2019; San Diego, USA. pp. 225–230.
33. Dhanachandra N, Chanu YJ. An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm. Multimedia Tools and Applications 2020; 79: 18839–18858. doi: 10.1007/s11042-020-08699-8
34. Kaboli SHA, Selvaraj J, Rahim NA. Rain-fall optimization algorithm: A population-based algorithm for solving constrained optimization problems. Journal of Computational Science 2017; 19: 31–42. doi: 10.1016/j.jocs.2016.12.010
35. Kirillov A, Wu Y, He K, Girshick R. PointRend : Image segmentation as rendering. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 13–19 June 2020; Seattle, USA. pp. 9799–9808.
36. Lambora A, Gupta K, Chopra K. Genetic algorithm—A literature review. In: Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon); 14–16 February 2019; Faridabad, India. pp. 380–384.
37. Li M, Du W, Nian F. An adaptive particle swarm optimization algorithm based on directed weighted complex network. Sensor/Actuator Networks and Networked Control Systems 2014; 2014(2): 1–7. doi: 10.1155/2014/434972
38. Rahman I, Vasant PM, Singh BSM, Abdullah-Al-Wadud M. On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles. Alexandria Engineering Journal 2016; 55(1): 419–426. doi: 10.1016/j.aej.2015.11.002
39. Hou Y, Gao H, Wang Z, Du C. Improved grey wolf optimization algorithm and application. Sensors 2022; 22(10): 3810. doi: 10.3390/s22103810
40. Matheen MA, Sundar S. IoT multimedia sensors for energy efficiency and security: A review of QoS aware and methods in wireless multimedia sensor networks. International Journal of Wireless Information Networks 2022; 29: 407–418. doi: 10.1007/s10776-022-00567-6
41. Zhou H, Schaefe G, Shi C. Fuzzy c-means techniques for medical image Segmentation. In: Fuzzy Systems in Bioinformatics and Computational Biology. Springer; 2009. pp. 257–271.
42. Almahfud MA, Setyawan R, Sari CA, Setiadi DRAM. An effective MRI brain image segmentation using joint clustering (k-means and fuzzy c-means). In: Proceedings of the 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI); 21–22 November 2018; Yogyakarta, Indonesia. pp. 11–16.
43. Bindu PV, Afthab J. Region of Interest based medical image compression using DCT and capsule autoencoder for telemedicine applications. In: Proceedings of the 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT); 15–17 September 2021; Erode, India. pp. 1–7.
44. Feltrin F. Brain tumor MRI images 44 classes. Available online: https://www.Kaggle.Com/Datasets/Fernando2rad/Brain-Tumor-Mri-Images-44c (accessed on 31 August 2023).
45. Goyal B, Dogra A, Agrawal S, Sohi BS. Noise issues prevailing in various types of medical images. Biomedical and Pharmacology Journal 2018; 11(3): 1227–1237. doi: 10.13005/bpj/1484
46. Kahali S, Sing JK, Saha PK. A new entropy-based approach for fuzzy c-means clustering and its application to brain MR image segmentation. Soft Computing 2019; 23: 10407–10414. doi: 10.1007/s00500-018-3594-y
47. Abdel-Maksoud E, Elmogy M, Al-Awadi R. Brain tumor segmentation based on a hybrid clustering technique. Egyptian Informatics Journal 2015; 16(1): 71–81. doi: 10.1016/j.eij.2015.01.003
48. Ranjbarzadeh R, Kasgari AB, Ghoushchi SJ, et al. Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi‑modalities brain images. Scientific Reports 2021; 11(1): 10930. doi: 10.1038/s41598-021-90428-8
49. Lee B, Yamanakkanavar N, Choi JY. Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture. PLoS One 2020; 15(8): e0236493. doi: 10.1371/journal.pone.0236493
DOI: https://doi.org/10.32629/jai.v6i3.973
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Bindu Puthentharayil Vikraman, Jabeena Afthab
License URL: https://creativecommons.org/licenses/by-nc/4.0