banner

An improved fuzzy c-means-raindrop optimizer for brain magnetic resonance image segmentation

Bindu Puthentharayil Vikraman, Jabeena Afthab

Abstract


The performance of healthcare systems, particularly regarding disease diagnosis and treatment planning, depends on the segmentation of medical images. Fuzzy c-means (FCM) is one of the most widely used clustering techniques for image segmentation due to its simplicity and effectiveness. FCM, on the other hand, has the disadvantages of being noisesensitive, quickly settling on local optimal solutions, and being sensitive to initial values. This paper suggests a fuzzy cmeans clustering improved with a nature-inspired raindrop optimizer for lesion extraction in brain magnetic resonance (MR) images to get around this constraint. In the preprocessing stage, the possible noises in a digital image, such as speckles, gaussian, etc., are eliminated by a hybrid filter—A combination of Gaussian, mean, and median filters. This paper presents a comparative analysis of FCM clustering and FCM-raindrop optimization (FCM-RO) approach. The algorithm performance is evaluated for images subjected to various possible noises that may affect an image during transmission and storage. The proposed FCM-RO approach is comparable to other methods now in use. The suggested system detects lesions with a partition coefficient of 0.9505 and a partition entropy of 0.0890. Brain MR images are analyzed using MATLAB software to find and extract malignancies. Image data retrieved from the public data source Kaggle are used to assess the system’s performance.

Keywords


FCM; clustering; raindrop optimization; MR image; image segmentation

Full Text:

PDF

References


1. Sran PK, Gupta S, Singh S. Segmentation based image compression of brain magnetic resonance images using visual saliency. Biomedical Signal Processing and Control 2020; 62: 102089. doi: 10.1016/j.bspc.2020.102089

2. Norouzi A, Rahim MSM, Altameem A, et al. Medical image segmentation methods, algorithms, and applications. IETE Technical Review 2014; 31(3): 199–213. doi: 10.1080/02564602.2014.906861

3. Mohammed BA, Al-ani MS. Digital medical image segmentation using fuzzy c-means clustering. UHD Journal of Science and Technology 2020; 4(1): 51–58. doi: 10.21928/uhdjst.v4n1y2020.pp51-58

4. Christ MCJ, Parvathi RMS. Fuzzy c-means algorithm for medical image segmentation. In: Proceedings of the 2011 3rd International Conference on Electronics Computer Technology; 8–10 April 2011; Kanyakumari, India. pp. 33–36.

5. Habib RU. Optimal compression of medical images. International Journal of Advanced Computer Science and Applications(IJACSA) 2019; 10(4): 133–140. doi: 10.14569/IJACSA.2019.0100415

6. Kasute SD, Kolhekar M. ROI based medical image compression. International Journal of Scientific Research in Network Security and Communication 2017; 5(1): 6–11.

7. Guerrero-valadez JM, Martínez-rios F. Rain-fall optimization algorithm with new parallel implementations. EAI Endorsed Transactions on Energy Web 2020; 7(29): 1–13. doi: 10.4108/eai.13-7-2018.163981

8. Bindu PV, Jabeena A. Medical image compression: A leap on recent progress and publications. In: Komanapalli VLN, Sivakumaran N, Hampannavar S (editors). Advances in Automation, Signal Processing, Instrumentation, and Control. Springer, Singapore; 2021. Volume 700. pp. 2281–2289.

9. Sreenivasulu P, Varadarajan S. An efficient lossless ROI image compression using wavelet-based modified region growing algorithm. Journal of Intelligent Systems 2018; 29(1): 1063–1078. doi: 10.1515/jisys-2018-0180

10. Parikh SS, Ruiz D, Kalva H, et al. High bit-depth medical image compression with HEVC. IEEE Journal of Biomedical and Health Informatics 2018; 22(2): 552–560. doi: 10.1109/JBHI.2017.2660482

11. Chen YY. Medical image compression using DCT-based subband decomposition and modified SPIHT data organization. International Journal of Medical Informatics 2007; 76(10): 717–725. doi: 10.1016/j.ijmedinf.2006.07.002

12. UmaMaheswari S, SrinivasaRaghavan V. Lossless medical image compression algorithm using tetrolet transformation. Journal of Ambient Intelligence and Humanized Computing 2021; 12(3): 4127–4135. doi: 10.1007/s12652-020-01792-8

13. Singh M, Kumar S, Chouhan SS, Shrivastava M. Various image compression techniques: Lossy and lossless. International Journal of Computer Applications 2016; 142(6): 23–26. doi: 10.5120/ijca2016909829

14. Gonzalez RC, Woods RE. Digital Image Processing, 4th ed. Pearson Education; 2018.

15. Ramesh KKD, Kumar GK, Swapna K, et al. A review of medical image segmentation algorithms. Available online: https://publications.eai.eu/index.php/phat/article/view/1211 (accessed on 31 August 2023).

16. Matheen MA, Sundar S. Histogram and entropy oriented image coding for clustered wireless multimedia sensor networks (WMSNS). Multimedia Tools and Applications 2022; 81(27): 38253–38276. doi: 10.1007/s11042-022-13060-2

17. Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022; 44(7): 3523–3542. doi: 10.1109/TPAMI.2021.3059968

18. Saritha S, Prabha NA. A comprehensive review: Segmentation of MRI images—Brain tumor. International Journal of Imaging Systems and Technology 2016; 26(4): 295–304. doi: 10.1002/ima.22201

19. Pustokhina IV, Pustokhin DA, Nguyen PT, et al. Multi-objective rain optimization algorithm with WELM model for customer churn prediction in telecommunication sector. Complex Intelligent Systems 2021; 9: 3473–3485. doi: 10.1007/s40747-021-00353-6

20. Matheen MA, Sundar S. A novel technique to mitigate the data redundancy and to improvise network lifetime using fuzzy criminal search Ebola optimization for WMSN. Sensors 2023; 23(4): 2218. doi: 10.3390/s23042218

21. Szilagyi L, Benyo Z, Szilagy SM, Adam HS. MR brain image segmentation using an enhanced fuzzy c-means algorithm. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 17–21 September 2003; Cancun, Mexico. pp. 724–726.

22. Horváth J. Image segmentation using fuzzy c-means. Available online: http://conf.uni-obuda.hu/sami2006/JurajHorvath.pdf (accessed on 31 August 2023).

23. Chuang K, Tzeng H, Chen S, et al. Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics 2006; 30(1): 9–15. doi: 10.1016/j.compmedimag.2005.10.001

24. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software 2014; 69: 46–61. doi: 10.1016/j.advengsoft.2013.12.007

25. Mohammdian-Khoshnoud M, Soltanian AR, Dehghan A, Farhadian M. Optimization of fuzzy c-means (FCM) clustering in cytology image segmentation using the gray wolf algorithm. BMC Molecular and Cell Biology 2022; 23(1): 9. doi: 10.1186/s12860-022-00408-7

26. Moazzeni AR, Khamehchi E. Rain optimization algorithm (ROA): A new metaheuristic method for drilling optimization solutions. Journal of Petroleum Science and Engineering 2020; 195: 107512. doi: 10.1016/j.petrol.2020.107512

27. Zotin AG, Simonov K, Kurako M, et al. Edge detection in MRI brain tumor images based on fuzzy c-means clustering. Procedia Computer Science 2018; 126: 1261–1270. doi: 10.1016/j.procs.2018.08.069

28. Mishro PK, Agrawal S, Panda R, Abraham A. A novel type-2 fuzzy c-means clustering for brain MR image segmentation. IEEE Transactions on Cybernetics 2020; 51(8): 3901–3912. doi: 10.1109/TCYB.2020.2994235

29. Zhou Z, Siddiquee MR, Tajbakhsh N, Liang J. UNet++ : Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions Medical Imaging 2020; 39(6): 1856–1867. doi: 10.1109/TMI.2019.2959609

30. Chen J, Lu Y, Yu Q, et al. TransUNet : Transformers make strong encoders for medical image segmentation. Computer Science 2011; 1–13.

31. Hesamian MH, Jia W, He X, Kennedy P. Deep learning techniques for medical image segmentation: Achievements and challenges. Journal of Digital Imaging 2019; 32(4): 582–596. doi: 10.1007/s10278-019-00227-x

32. Jha D, Smedsrud PH, Riegler MA, et al. ResUNet++: An advanced architecture for medical image segmentation. In: Proceedings of the 2019 IEEE International Symposium on Multimedia (ISM); 9–11 December 2019; San Diego, USA. pp. 225–230.

33. Dhanachandra N, Chanu YJ. An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm. Multimedia Tools and Applications 2020; 79: 18839–18858. doi: 10.1007/s11042-020-08699-8

34. Kaboli SHA, Selvaraj J, Rahim NA. Rain-fall optimization algorithm: A population-based algorithm for solving constrained optimization problems. Journal of Computational Science 2017; 19: 31–42. doi: 10.1016/j.jocs.2016.12.010

35. Kirillov A, Wu Y, He K, Girshick R. PointRend : Image segmentation as rendering. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 13–19 June 2020; Seattle, USA. pp. 9799–9808.

36. Lambora A, Gupta K, Chopra K. Genetic algorithm—A literature review. In: Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon); 14–16 February 2019; Faridabad, India. pp. 380–384.

37. Li M, Du W, Nian F. An adaptive particle swarm optimization algorithm based on directed weighted complex network. Sensor/Actuator Networks and Networked Control Systems 2014; 2014(2): 1–7. doi: 10.1155/2014/434972

38. Rahman I, Vasant PM, Singh BSM, Abdullah-Al-Wadud M. On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles. Alexandria Engineering Journal 2016; 55(1): 419–426. doi: 10.1016/j.aej.2015.11.002

39. Hou Y, Gao H, Wang Z, Du C. Improved grey wolf optimization algorithm and application. Sensors 2022; 22(10): 3810. doi: 10.3390/s22103810

40. Matheen MA, Sundar S. IoT multimedia sensors for energy efficiency and security: A review of QoS aware and methods in wireless multimedia sensor networks. International Journal of Wireless Information Networks 2022; 29: 407–418. doi: 10.1007/s10776-022-00567-6

41. Zhou H, Schaefe G, Shi C. Fuzzy c-means techniques for medical image Segmentation. In: Fuzzy Systems in Bioinformatics and Computational Biology. Springer; 2009. pp. 257–271.

42. Almahfud MA, Setyawan R, Sari CA, Setiadi DRAM. An effective MRI brain image segmentation using joint clustering (k-means and fuzzy c-means). In: Proceedings of the 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI); 21–22 November 2018; Yogyakarta, Indonesia. pp. 11–16.

43. Bindu PV, Afthab J. Region of Interest based medical image compression using DCT and capsule autoencoder for telemedicine applications. In: Proceedings of the 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT); 15–17 September 2021; Erode, India. pp. 1–7.

44. Feltrin F. Brain tumor MRI images 44 classes. Available online: https://www.Kaggle.Com/Datasets/Fernando2rad/Brain-Tumor-Mri-Images-44c (accessed on 31 August 2023).

45. Goyal B, Dogra A, Agrawal S, Sohi BS. Noise issues prevailing in various types of medical images. Biomedical and Pharmacology Journal 2018; 11(3): 1227–1237. doi: 10.13005/bpj/1484

46. Kahali S, Sing JK, Saha PK. A new entropy-based approach for fuzzy c-means clustering and its application to brain MR image segmentation. Soft Computing 2019; 23: 10407–10414. doi: 10.1007/s00500-018-3594-y

47. Abdel-Maksoud E, Elmogy M, Al-Awadi R. Brain tumor segmentation based on a hybrid clustering technique. Egyptian Informatics Journal 2015; 16(1): 71–81. doi: 10.1016/j.eij.2015.01.003

48. Ranjbarzadeh R, Kasgari AB, Ghoushchi SJ, et al. Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi‑modalities brain images. Scientific Reports 2021; 11(1): 10930. doi: 10.1038/s41598-021-90428-8

49. Lee B, Yamanakkanavar N, Choi JY. Automatic segmentation of brain MRI using a novel patch-wise U-net deep architecture. PLoS One 2020; 15(8): e0236493. doi: 10.1371/journal.pone.0236493




DOI: https://doi.org/10.32629/jai.v6i3.973

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Bindu Puthentharayil Vikraman, Jabeena Afthab

License URL: https://creativecommons.org/licenses/by-nc/4.0