An implementation of CNN+NLP for evaluating and impacting social media advertising

Karrar S. Mohsin¹, P. G. Suraj², V.P. Sriram³, Minu Susan Jacob⁴, M. Anto Bennet⁵, Sudhakar Sengan⁶*, Pankaj Dadheech⁷

¹ Department of Information Technology, College of Science, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
² VIT Business School, Vellore, Tamil Nadu 632014, India
³ Department of MBA, Acharya Bangalore B School (ABBS), Karnataka 560091, India
⁴ Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India
⁵ Department of ECE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India
⁶ Department of Computer Science and Engineering, PSN College of Engineering and Technology, Tirunelveli 627152, India
⁷ Department of Computer Science and Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan (SKIT), Rajasthan 302017, India

* Corresponding author: Sudhakar Sengan, sudhasengan@gmail.com

ABSTRACT

Post-to-Facebook data have been eliminated from text and image analysis investigations on Social Media (SM) participation, which have tested techniques for predicting activity. SM has fundamentally revolutionised the marketing division by presenting a direct link to users’ inboxes. This research investigates Natural Language Processing (NLP) and Deep Convolutional Neural Networks (DeepCNN) to determine whether these technologies can improve SMA. Advertisers can support their SMA approaches by employing earlier methods to recognise consumer demands, behaviours, and preferences. A novel technique that integrates Deep Learning and Natural Language Processing in order to improve SM awareness has the possibility of helping revolutionise on-line advertising techniques, opening the for additional studies, and setting foundations for a Decision-Making System (DMS) which includes advertising data analytics and Artificial Intelligence (AI). A distinctive framework that forecasts how users behave using like count, post count, and sentiment was built utilising 500k posts on Facebook as the basis for the research investigation’s approach. Image and text data performed better than unpredictability methods, demonstrating that data fusion is essential when predicting user behaviour.

Keywords: sentiment analysis; NLP; social media advertising; customer visions; machine learning; brand monitoring

1. Introduction

Businesses in the fast-growing field of Social Media Advertising (SMA) are perpetually searching for novel methods to communicate with their intended consumers, win over suspicious customers, and keep them separated from other businesses. For these factors, the outside world of Social Media (SM), which is defined by differences generated by consumer information and the scope of its impact, has evolved into a vital tool[1-5]. An individual’s portfolio of actual life events is the thoughts, ideas, and sentiments they communicate on Social Media Networks (SMN). Marketers proficient at collecting
information from interactions may profit significantly from these sentiments, ideas, and perspectives. Sentiment Analysis (SA) is now recognized as an essential tool in this setting for accessing the implicit value of data on sentiment. As Natural Language Processing (NLP) has developed, this type of outcome is within approach[6–10].

As part of NLP, SA attempts to recognize, classify, and measure the fundamental emotional content of what is said. The abbreviation “Opinion Analysis” can be utilized similarly in this study area. Furthermore, to emphasise elementary, minimal behaviours, advertisers ought to attempt to recognize their users’ secret feelings and thoughts[11–15]. Machine Learning (ML) algorithms and advanced NLP approaches have evolved SA from an easy test into a vital tool for businesses winning in the worldwide SMN business. The fundamental goal of this work is to provide a complete analysis of SMA through the context of SM. In order to provide significant knowledge about the emotional and psychological well-being of the people they serve, businesses might use NLP in different approaches. The present article examines these techniques[16–20].

This paper presents a detailed examination of the issue, addressing the scientific basis of SA and the real-world implications of the marketing techniques analyzed. The impact of SA in an SMA scenario may not be underscored[21–25]. Applying this kind of technology, companies can evaluate consumer feedback, monitor the general public’s perception of their business, assess the success of their advertising efforts, and recognize fresh innovations and challenges as they develop.

A prevalent feature of data obtained from SMN is an incredible quantity of raw information. An additional benefit is that SA can suggestively impact ranking management, the level of customer service, and the production of new goods. However, it maintains its core structure, which is particularly identifiable[26–30].

Furthermore, it includes factors like review and emotional evaluation that are impacted by contextual factors, answering major problems for SA. Ethical issues, such as those addressing biases in algorithms and privacy, enhance the significance of moral principles and practical use. It explores the philosophical foundations of SA and presents instances of its implementation in advertising methods, showing its significant influence[31–35]. Consumers will find this data extremely valuable when processing the regularly developing business. In the marketing model, this article recommends delving into NLP and SA. The article emphasizes the significance of such approaches to assisting data-driven Decision-Making Systems (DMS) in sustaining attractiveness in the rapidly evolving marketing and promotional business.

This research’s objective is to share knowledge on the possibilities, risks, and ethical issues facing SA and present an approach for using NLP to find important customer data within the framework of SMM[36–38].

In the present day of infinite data, companies that are prepared to interact with the views and emotions of their intended consumers will have a vital leg toward winning the SMM business. The procedure of retrieving sentiments from linguistic information on SMA networks and on-line reviews is named NLP, also referred to as SA. It uses ML, practical, and language-related techniques to classify sentiment as positive, neutral, or negative. Primary methods encompass the preprocessing of texts and tokenization, which is a Feature Extraction (FE), among others. ML models such as SVM, Naive Bayes, or LSTM are developed on tagged datasets to classify sentiments. There are several software, such as tracking businesses, designing products, analysing advertising efforts, researching competitors, and enhancing consumer service. Firms can more effectively comprehend the views of their customers, deal with emergencies, identify the positive and negative aspects of their goods, analyse their advertising strategies, and improve the standard of consumer fulfilment[39,40].

Although NLP-based SA has tremendous potential, it must contend with many obstacles. Ambiguity and context play a considerable role in determining the meaning of words and phrases since the context in which they are employed may drastically alter that meaning[41–44]. The ability of SA algorithms to comprehend context is a challenging task. Because sarcasm and irony are often communicated via oblique verbal clues, SA has
difficulty identifying them in written communication. Multilingual analysis Since SM is a worldwide platform, user SA must take into consideration a variety of languages and dialects. Emojis and Emoticons: Emojis and emoticons may substantially alter the emotion of communication, yet it is not easy to precisely discern what is being said via their use\[45–50\]. In many datasets, one sentiment class (for example, neutral) may dominate, leading to unbalanced training data and bias in the model. Neutrality may be the most common sentiment class.

The article is systematized as follows: the detailed overview of impacting of social media advertising is given in Section 1, the related works are discussed in Section 2, the proposed Sentiment Analysis using CNN+NLP is given in Section 3, the result and discussion are shown in Section 4, and the article is concluded in Section 5.

2. Related works

Authors survey found that advertising managers trust SMA analytics like recognition of the brand (89%), the recommendations interest (88%), customer happiness (87%), input from users (80%), and analytics on the internet (80%)\[51–55\]. Website views, price per 1000 views, and CTR are recommended. 18% of business enterprises will make more investments in the use of SM.

The authors researched mining feedback on social media and correlated images of image sentiment by SA\[56–60\]. Implementing an object image classification approach, SA classifies the sentiment of these clustered images after an unsupervised system develops.

SA classifies texts by opinion instead of subject. Data retrieval, NLP, data analysis, and knowledge management are methods to identify qualitative information in enormous amounts of raw data\[61–65\].

Government, e-commerce, and real-time SMA analysis use SA. It examines social media comments for its positive and negative aspects. It evaluates e-commerce activities and the quality of goods to convert unhappy consumers into marketers. Tweet feels analyses Twitter in real-time. Blogger-centric contextual marketing leverages SA to develop brand-focused customised advertisements. Overall, SA is frequently employed for recognizing and assessing patterns of behaviour and sentiment\[66–70\].

Significant ML and DL text classification studies are available. Conventional techniques employ bag-of-words, TF-IDF, handcrafted n-grams, and complex features like phrases containing nouns, part-of-speech tags, and tree kernels for feature engineering and classification. More complicated features have been developed\[71–75\].

The technique extracts ‘k’ essential text features in absolute order through several temporal k-max-pooling layers. The length of the sentence and layer order impact ‘k’. CNN classifies brief texts following word vector clustering\[76–80\].

BiLSTM-CRF extracts target words from subjective sentences and classifies the results into three categories for better sentence-level SA. Dividing sentences based on different thought targets increases SA\[81–85\].

3. Proposed methodology—sentiment analysis (SA)

The research methodology for the study incorporates a systematic approach to collecting, analysing, and evaluating data about SA in the context of SMA. The study was conducted using the impact of Leveraging NLP for Customer Insights \[86–90\]. This analytical phase includes a comprehensive investigation of the theoretical foundations of SA, NLP methods, and their dynamic role in the SMA field. Researchers work hard to understand the complexities of these fields, from the most basic principles to the most recent and cutting-edge breakthroughs.

In the context of SMA, this conceptual inquiry offers the framework for setting research questions,
establishing hypotheses, and designing an organizational method that perfectly matches SA’s intricacies. In addition to conceptual comprehension, the researchers also investigate the current state of the relevant technology background. Researchers address the most current advances in the tools, systems, and inventions within the contexts of NLP and SA. With the support of these scientific questionnaires, participants could select the correct study metrics, which put the examination at the cutting edge of the most modern scientific developments\cite{91-95}. It prevents the SA from using the most recently developed and cutting-edge tools to extract valuable data from the massive data collected from SMN sites.

Data cleansing (DC): The DC method is a key introductory phase in the study’s method, which demands significant focus on data. During this stage, a coordinated attempt is made to eliminate any unwarranted activity that might make the subsequent estimation false. The elimination of irrelevant words, unique symbols, and emojis and the collection of essential data are all part of this procedure. The studies ensure that the following analysis will be achieved on an error-free and significant dataset by filtering the data using this method. The investigation findings are then more precise and trustworthy due to the analysis.

Tokenization: The following procedure, which occurs after the data cleansing process is done, is to tokenize the textual data. The method divides the constant text flow into segments, including phrases, paragraphs, or single words. Tokenization is essential since it develops the text required for the following analysis. Through employing this approach, analysts may probe deeper into the data in search of sentiments, syntax, and semantic correlations. Once data is classified, it provides the analysis model and is processed using various NLP techniques\cite{96-98}.

Feature engineering: In order to support the actual examination of the data as text, modern NLP methods such as word encoding and Term Frequency-Inverse Document Frequency (TF-IDF) are used. These methods change the text into statistical information, thereby rendering the text accessible to statistical analysis\cite{99,100}. One technique to record the semantic relationships between words is word encoding, which consists of mapping words into high-dimensional vector spaces. TF-IDF is a method that sets a numerical value to phrases to evaluate their importance in an article compared to a database. As a result, feature engineering is a vital part of preparing the data for SA and following ML techniques.

Convolutional layers process the incoming data by applying filters or kernels. Sliding over the input feature maps, these filters multiply elements by themselves and then add the results to create feature maps that depict local patterns. These regional patterns may indicate significant word or phrase combinations that influence sentiment in the context of SA. An increasing number of abstract and sophisticated characteristics may be learned by the network by stacking convolutional layers, Equation (1):

$$z_{i,j} = \sum_{m=1}^{f} \sum_{n=1}^{f} x_{i+m-1,j+n-1} \cdot w_{m,n} + b$$

where z_{ij} is the feature map in the output form, the feature map in the input is given as x_{ij}, weight filters are indicated by $w_{m,n}$, the filter size is given as ‘f’, and the bias is given as ‘b’.

The resulting feature maps are subjected, element by element, to an activation function after each convolutional layer. Rectified Linear Unit (ReLU) is a popular option that adds non-linearity to the model by preserving positive values and setting negative values to zero. In order to allow the network to learn intricate correlations between input variables and feelings, non-linear activation functions are essential, Equation (2).

$$h_{i,j} = ReLU(z_{i,j})$$

where the activation function in the output layer is indicated by $h_{i,j}$.

Pooling layers preserve significant information while reducing the spatial dimensions of the feature maps. For instance, max pooling downsamples the feature maps by choosing the most critical value from a range of values. The average value inside the frame is calculated by average pooling. By pooling the input data, the network’s computational cost may be decreased, and the learnt features become more resilient to slight
distortions or translations, Equation (3):

\[\text{MaxPooling}(x) = \max (x_{i:s-1,j:s-1}) \] (3)

where the window size is signified as ‘s’. The output is flattened into a 1-D vector after the pooling layers. The multi-dimensional feature maps are rearranged throughout this step to create a format that can be entered into the fully linked layers. While the input is converted into a format that can be handled by Conventional Neural Network (CNN) layers, flattening maintains the spatial connections that the convolutional layers have learnt.

Dense layers, or Fully Connected (FC) layers, acquire high-level representations of the characteristics that the convolutional layers have collected. Every neuron in the layer above it is coupled to every other neuron in a wholly connected layer. The network can record intricate relationships between several input data components to these layers, which collect and integrate the information discovered by the convolutional layers, Equation (4).

\[y = \text{SoftMax}(Wx + b) \] (4)

where the weight matrix is specified as ‘W’, bias is assumed as ‘b’, and the output SoftMax activation function is exposed as SoftMax.

The network’s output layer comprises SoftMax units representing several emotion classifications (positive, negative, and neutral). Each class’s probabilities are generated using the SoftMax activation function, and the total equals 1. The emotion of the supplied text is projected to be the class with the greatest likelihood. This last layer in SA enables the network to categorize the input text’s sentiment using its learnt characteristics.

4. Result and discussion

A study of the SA in SMA, which has been rendered feasible by the tools of NLP, has resulted in several important and helpful findings that emphasise the revolutionary nature of the field. The results demonstrate that the domain has the potential to modernise the industry\(^{100-105}\). This section presents an easily understood overview of these realisations by emphasising two important features: the inherent value of SA and its impact on advertisement tactics.

A further source of data showing that SA is not only an innovation in technology but also an imperative for contemporary technology businesses that function in the age of digital commerce is presented by the research results of this research. Measuring and quantifying sentiments that customers exhibit across SMA sites provides businesses with valuable insights into their target consumers’ psychological reactions, likes and dislikes and opinions. Implementing this knowledge serves as a guide that leads decisions for marketing purposes, product development, and customer meeting systems. SA enables businesses to recognise emerging developments, analyse the impact of advertising tasks, and rapidly address problems or negative sentiment surges. It also exposes the complicated patterns of customer sentiment, which displays the most profound levels of customer sentiment. It also renders it more accessible to implement a client-centric method, where businesses adapt their goods and services, content, and message to the general sentiment. As an outcome, this contributes to improved client happiness and brand loyalty.

The processing efficiency of our architecture can be determined by model training and forecasting time. The architecture is executed on one Intel i7 1.8-GHz PC with a GPU and 32 GB of memory. The initially generated sample Twitter set needed 2 h of training and 5 s of prediction. Due to the small sample size, the second set was trained for 15 h, and the third was trained for 20 min.

4.1. Data context

Consumers respond to text and images in SM messages, which this research analyses. Post metadata contains likes, shares, reactions, tags, and timestamps. The data comes from customer interactions like comments, likes, and sharing. Advertiser profiles on Facebook featured ratings, followers, and lively comments. Page data, posts, post data, and comments are employed to research Facebook user behaviour.
According to Facebook’s privacy policy, comments and replies are confidential. Subscriber webpages are typically banned, so the app cannot see user information.

4.2. Data origin

The advertising software company Ad helps advertisers produce and advertise advertisements throughout different platforms. The on-line platform provides Facebook advertising guidance and over 2500 test advertisements. The tool allows advertisers to send advertisements to various platforms from one place. The article collected sample advertisements for SA.

4.3. Collection

The programming language Python web scraper searches websites on Facebook utilizing its graph API. No more than 3000 posts were obtained through scraping per page to limit ML presumption and Facebook’s everyday API session limit. Over 3000 posts have been collected. Text data was obtained and stored in a central repository, while image URLs minimised space. The result illustrates the data extraction procedure and a graph of the Facebook site comments collected. A user-friendly and ordered Facebook API enables URL prefixes for visiting children’s objects. The URL can be amended with posts and comments via ‘/Posts’ or ‘/Comments’. Collecting data is more accessible and less error-prone. URLs serve as distinctive passwords for the text on a page element. The URL is the database’s key element, with 500k comments and sharing rates and 100k post sentiment samples in resultant graphs.

4.4. Text processing

Text data will be processed into NN vectors in the context of the research. Blank space is employed to divide text into words, generate word tokens, arrange them into sentences, lowercase words, eliminate stopwords, and delete words below three. Port stemmers cause stems for all words and POS tag repositories tag parts-of-speech. Word lemmatizers extract stems from stem and POS tags and send them into TD-IDF vectorizers for generating word vectors. These vectors represent NN features. “DL with Keras” includes an example.

In the context of SA, visual representations play a crucial role in elucidating numerous data and model performance features. Figure 1, the Word Cloud, provides a visually striking depiction of the most prominent words within the dataset, offering insights into the prevalent themes and SA. Figure 2, Classification Accuracy for Different Epochs, charts the evolution of model accuracy over time, serving as a diagnostic tool to assess convergence or divergence during training. Figure 3, Sentiment Distribution, offers a comprehensive view of the SA by illustrating the distribution of different SA across the dataset, aiding in understanding the overall SA. In the end, Figure 4, the Confusion Matrix, shows predicted labels to accurate labels for each sentiment class to demonstrate how well the model performed. This matrix measures SA algorithms’ accuracy, precision, recall, and F1-score. These visual representations enable SA researchers and practitioners to increase complete identifications, find patterns, and improve SA models.

Figure 1. Word cloud.
The present research provides information about the life-changing effect that SM can have on marketing approaches. Technology-driven promotion enables businesses to communicate more directly and appropriately with the target people. First, SA may influence advertisements and other communications following consumer sentiment. It allows for the best methods of communication and timing, improving the probability that the target customer will like the information being provided. SA also helps businesses monitor consumer sentiment in real-time. The result is that enterprises adapt rapidly to problems and possibilities. It allows companies to manage adverse reviews and avoid emergencies, making it required to manage reputation resources.

5. Conclusion and future work

This investigation extends to the current state of the literature regarding forecasting user interactions. A data-driven advertising approach leverages data from the intended consumer’s electronic interactions instead of emotion when making decisions. This study integrated image and text-based models, with mid-model fusion predicting more significant user interaction. The CNN network functioned well on SM statistics, and the combined models performed better than the text-based NN and image-based CNN in all parameters. Image-based models are superior to text-based models, particularly with complicated data sets. On-line businesses
require SA to address problems and concentrate on customers. SA transforms advertising through interacting with customers and correlating content to sentiments. SA secures the reputation of a business by giving instant feedback from customers’ data to solve problems and profit upon advantages. It extends above essential marketing and provides several advertising approaches. The research project forecasted user participation for both advertisements employing a hybrid model. The random model forecasted post count, share count, and post sentiment for 60% of the period for each blog post. The combination of the models accurately predicted post sentiment, post count, and share count 61%, 62%, and 65% of the time, defining an acceptable standard for future studies.

AI has revolutionized the development of products, helping businesses customize products according to consumer demands and improving consumer happiness and trust. Improved NLP algorithms can successfully identify irony and sarcasm in multiple languages, rendering this interesting for SMM.

Author contributions

Conceptualization, SS; methodology, SS; software, KSM; validation, PGS and VPS; formal analysis, MSJ; investigation, MAB; resources, PD; data curation, VPS; writing—original draft preparation, SS; writing—review and editing, SS; visualization, PD; supervision, KSM; project administration, MSJ; funding acquisition, MAB. All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

66. Xia J. Juggling ecumenical wisdoms and xenophobic institutions: Framing and modelling China’s telecommunications universal service and rural digitalization initiatives and policies. Telecommunications Policy. 2022; 46(2): 102258.

87. Prakash KB. Content extraction studies using total distance algorithm. In: Proceedings of the 2016 2nd
International Conference on Applied and Theoretical Computing and Communication Technology.

94. Prakash KB, Dorairangaswamy MA, Raja Raman A. ANN for multi-lingual regional web communication. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 2012.

100. Prakash KB, Dorai Rangaswamy MA, Ananthan TV, Rajavarman VN. Information extraction in unstructured multilingual web documents. Indian Journal of Science and Technology. 2015; 8(16). doi: 10.17485/ijst/2015/v8i16/54252

