banner

Catalyzing early intervention: A robust deep learning approach for detecting retinopathy of prematurity and plus diseases in infants

Aws Saad, Nazar Salih, Mohamed Ksantini, Nebras Hussein, Donia Benhalema, Ali Abdulrazzaq, Sohaib Ahmed

Abstract


Retinopathy of prematurity (ROP) is a major cause of childhood blindness, requiring precise and prompt diagnosis. This paper presents a new method that uses deep convolutional neural network (DCNN) models—VGG19, ResNet101, and DenseNet169—to identify illnesses in ROP fundus images. 2776 pictures from the Al-Amal Eye Centre were included in the dataset, with an equal number of normal and plus illness cases. The models underwent thorough training and evaluation, with VGG19 emerging as the most accurate, with an impressive 97.07% accuracy. The study emphasizes the potential benefits of using these models to improve ROP screening programs by offering a consistent and effective method of diagnosis that can greatly impact clinical decision-making. This research enhances the field of neonatal ophthalmology and provides vital insights for enhancing patient care in managing ROP.


Keywords


DCNN; ResNet101; DenseNet169; VGG19; retinopathy of prematurity; fundus images; plus disease

Full Text:

PDF

References


1. Zhang G, Yang M, Zeng J, et al. Comparison of intravitreal injection of ranibizumab versus laser therapy for zone ii treatment-requiring retinopathy of prematurity. Retina. 2017; 37(4): 710-717. doi: 10.1097/iae.0000000000001241

2. Kim SJ, Port AD, Swan R, et al. Retinopathy of prematurity: a review of risk factors and their clinical significance. Survey of Ophthalmology. 2018; 63(5): 618-637. doi: 10.1016/j.survophthal.2018.04.002

3. Hutchinson AK, Melia M, Yang MB, et al. Clinical Models and Algorithms for the Prediction of Retinopathy of Prematurity. Ophthalmology. 2016; 123(4): 804-816. doi: 10.1016/j.ophtha.2015.11.003

4. Acevedo-Castellón R, Ramírez-Neria P, García-Franco R. Incidence of retinopathy of prematurity type 1 and type 2 in a regional Hospital of Social Security in the state of Queretaro, Mexico (2017–2018). BMC Ophthalmology. 2019; 19(1). doi: 10.1186/s12886-019-1095-0

5. Azami M, Jaafari Z, Rahmati S, et al. Prevalence and risk factors of retinopathy of prematurity in Iran: a systematic review and meta-analysis. BMC Ophthalmology. 2018; 18(1). doi: 10.1186/s12886-018-0732-3

6. Palmer EA, Flynn JT, Hardy RJ, et al. Incidence and Early Course of Retinopathy of Prematurity. Ophthalmology. 2020; 127(4): S84-S96. doi: 10.1016/j.ophtha.2020.01.034

7. Shah PK. Retinopathy of prematurity: Past, present and future. World Journal of Clinical Pediatrics. 2016; 5(1): 35. doi: 10.5409/wjcp.v5.i1.35

8. Salih N, Ksantini M, Nebras Hussein, et al. Development of New Intelligent Algorithms Based on Ensemble Learning for Image Processing for Retinopathy of Prematurity Disease Assessment. Unpublished. Published online 2023. doi: 10.13140/RG.2.2.16939.41760

9. Garner A, Ben-Sira I, Konen, et al. An International Classification of Retinopathy of Prematurity. Pediatrics. 1984; 74(1): 127-133. doi: 10.1542/peds.74.1.127

10. Aaberg T. An International Classification of Retinopathy of Prematurity. Archives of Ophthalmology. 1987; 105(7): 906. doi: 10.1001/archopht.1987.01060070042025

11. Aaberg T. The International Classification of Retinopathy of Prematurity Revisited. Archives of Ophthalmology. 2005; 123(7): 991. doi: 10.1001/archopht.123.7.991

12. Tong Y, Lu W, Deng Q qin, et al. Automated identification of retinopathy of prematurity by image-based deep learning. Eye and Vision. 2020; 7(1). doi: 10.1186/s40662-020-00206-2

13. Huang YP, Vadloori S, Chu HC, et al. Deep Learning Models for Automated Diagnosis of Retinopathy of Prematurity in Preterm Infants. Electronics. 2020; 9(9): 1444. doi: 10.3390/electronics9091444

14. Rawat W, Wang Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation. 2017; 29(9): 2352–2449.

15. Obaid AM, Shawkat AS, Abdulhussein NS. A powerful deep learning method for skin cancer detection. Journal of Autonomous Intelligence. 2023; 7(1). doi: 10.32629/jai.v7i1.1156

16. van Ginneken B. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning. Radiological Physics and Technology. 2017; 10(1): 23-32. doi: 10.1007/s12194-017-0394-5

17. Hu J, Chen Y, Zhong J, et al. Automated Analysis for Retinopathy of Prematurity by Deep Neural Networks. IEEE Transactions on Medical Imaging. 2019; 38(1): 269-279. doi: 10.1109/tmi.2018.2863562

18. Nadeem MW, Ghamdi MAA, Hussain M, et al. Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges. Brain Sciences. 2020; 10(2): 118. doi: 10.3390/brainsci10020118

19. El Asnaoui K. Design ensemble deep learning model for pneumonia disease classification. International Journal of Multimedia Information Retrieval. 2021; 10(1): 55-68. doi: 10.1007/s13735-021-00204-7

20. Bejnordi BE, Zuidhof G, Balkenhol M, et al. Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. ArXiv. 2017; arXiv:1705.03678. doi: 10.48550/arXiv.1705.03678

21. Salih N, Ksantini M, Hussein N, et al. Prediction of ROP Zones Using Deep Learning Algorithms and Voting Classifier Technique. International Journal of Computational Intelligence Systems. 2023; 16(1). doi: 10.1007/s44196-023-00268-9

22. Salih N, Ksantini M, Hussein N, et al. Detection of Retinopathy of Prematurity Stages Utilizing Deep Neural Networks. In: Proceedings of the Seventh International Congress on Information and Communication Technology.

23. Salih N, Ksantini M, Hussein N, et al. Deep Learning Models and Fusion Classification Technique for Accurate Diagnosis of Retinopathy of Prematurity in Preterm Newborn. Baghdad Science Journal. Published online October 20, 2023. doi: 10.21123/bsj.2023.8747

24. Brown JM, Campbell JP, Beers A, et al. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmology. 2018; 136(7): 803. doi: 10.1001/jamaophthalmol.2018.1934

25. Redd TK, Campbell JP, Brown JM, et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. British Journal of Ophthalmology. 2018; 103(5): 580-584. doi: 10.1136/bjophthalmol-2018-313156

26. Tan Z, Simkin S, Lai C, et al. Deep Learning Algorithm for Automated Diagnosis of Retinopathy of Prematurity Plus Disease. Translational Vision Science & Technology. 2019; 8(6): 23. doi: 10.1167/tvst.8.6.23

27. Mao J, Luo Y, Liu L, et al. Automated diagnosis and quantitative analysis of plus disease in retinopathy of prematurity based on deep convolutional neural networks. Acta Ophthalmologica. 2019; 98(3). doi: 10.1111/aos.14264

28. Huang YP, Vadloori S, Chu HC, et al. Deep Learning Models for Automated Diagnosis of Retinopathy of Prematurity in Preterm Infants. Electronics. 2020; 9(9): 1444. doi: 10.3390/electronics9091444

29. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Published online 2014. doi: 10.48550/ARXIV.1409.1556

30. He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition. Published online 2015. doi: 10.48550/ARXIV.1512.03385

31. Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks. arXiv. 2021; arXiv:1608.06993.




DOI: https://doi.org/10.32629/jai.v7i5.1589

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Aws Saad, Nazar Salih, Mohamed Ksantini, Nebras Hussein, Donia Benhalema, Ali Abdulrazzaq, Sohaib Ahmed

License URL: https://creativecommons.org/licenses/by-nc/4.0/